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Abstract
Variance in reproductive success (s2

k
, with k = number	of	offspring)	plays	a	large	role	

in determining the rate of genetic drift and the scope within which selection acts. 
Various frameworks have been proposed to parse factors that contribute to s2

k
, but 

none has focused on age-specific values of ϕ = s2
k
∕k, which indicate the degree to 

which reproductive skew is overdispersed (compared to the random Poisson expec-
tation)	 among	 individuals	 of	 the	 same	age	 and	 sex.	 Instead,	within-age	effects	 are	
generally	lumped	with	residual	variance	and	treated	as	“noise.”	Here,	an	ANOVA	sums-
of-squares	framework	is	used	to	partition	variance	in	annual	and	lifetime	reproductive	
success into between-group and within-group components. For annual reproduction, 
the between-age effect depends on age-specific fecundity (bx),	but	relatively	few	em-
pirical data are available on the within-age effect, which depends on ϕx. By defining 
groups	by	age-at-death	 rather	 than	age,	 the	same	ANOVA	framework	can	be	used	
to	partition	variance	in	lifetime	reproductive	success	(LRS)	into	between-group	and	
within-group	components.	Analytical	methods	are	used	to	develop	null-model	expec-
tations for random contributions to within-group and between-group components. 
For analysis of LRS, random variation in longevity appears as part of the between-
group	variance,	and	effects	(if	any)	of	skip	breeding	and	persistent	individual	differ-
ences contribute to the within-group variance. Simulations are used to show that the 
methods for variance partitioning are asymptotically unbiased. Practical application is 
illustrated	with	empirical	data	for	annual	reproduction	in	American	black	bears	and	
lifetime reproduction in Dutch great tits. Results show that overdispersed within-age 
variance	(1)	dominates	annual	s2

k
	in	both	male	and	female	black	bears,	(2)	is	the	primary	

factor	that	reduces	annual	effective	size	to	a	fraction	of	the	number	of	adults,	and	(3)	
represents	most	of	the	opportunity	for	selection.	In	contrast,	about	a	quarter	of	the	
variance in LRS in great tits can be attributed to random variation in longevity, and 
most of the rest is due to modest differences in fecundity with age estimated for a 
single cohort of females. R code is provided that reads generic input files for annual 
and lifetime reproductive success and allows users to conduct variance partitioning 
with their own data.
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1  |  INTRODUC TION

Variation among individuals is the stuff of evolution. Evolution by 
natural	 selection	 requires	 individual	 variation	 in	 heritable	 pheno-
typic	traits	affecting	fitness.	Over	a	century	ago,	RA	Fisher	 (1918)	
introduced	 the	 term	 “variance”	 (the	 square	of	 the	 standard	devia-
tion)	 as	 the	preferred	metric	 for	measuring	 this	 variation,	 and	 im-
mediately efforts began to identify different factors contributing to 
an overall variance. Perhaps the most famous such example was by 
Lewontin (1972),	who	 estimated	 that	 only	 about	 15%	of	 the	 total	
molecular genetic variance in humans was due to differences be-
tween races or between populations within races, with the remain-
ing	85%	found	among	individuals	within	populations.	The	amount	of	
data Lewontin had available at the time was extremely limited by to-
day's	standards,	but	his	qualitative	conclusions	have	proved	surpris-
ingly robust and influential across a half-century (Novembre, 2022).

Another	kind	of	variance—in	reproductive	success,	measured	as	
the number of offspring, k,	 contributed	 to	 the	next	generation—is	
also crucially important to evolution. The ratio of variance-to-
mean offspring number 

(

ϕ = �2
k
∕k

)

	has	been	termed	the	“Index	of	
Variability” (Crow & Morton, 1955),	 and	 this	 index	 is	 the	 primary	
factor	 that	 determines	 to	 what	 extent	 (if	 any)	 the	 effective	 pop-
ulation size (Ne)	 is	 less	 than	 the	 census	 size	 (N)	 (Caballero,	 1994; 
Crow & Denniston, 1988).	A	related	index	defined	by	Crow	(1958);	
I = �2

k
∕k

2
=	 the	variance	 in	relative	fitness)	has	come	to	be	known	

as the opportunity for selection because its sets an upper limit to 
the rate of evolutionary adaptation. Variance in offspring number 
appears	in	the	numerator	of	both	of	these	indices	and	consequently	
has as large role in determining both the rate of genetic drift and the 
scope within which selection can act.

The major goal of this paper is to develop an approach analogous 
to Lewontin's, but instead of apportioning genetic data based on race 
or geography, we will be concerned with partitioning the overall vari-
ance in reproductive success into within-age and between-age com-
ponents. Emphasis is on the large fraction of the world's species that 
are age structured and iteroparous, with overlapping generations 
and	strongly	seasonal	(birth-pulse)	reproduction	(Caswell,	2001).	For	
these species, it is important to consider two different frameworks 
for measuring reproductive success: within seasons or time periods 
(hereafter	assumed	to	be	years),	and	over	lifetimes	(quantified	as	life-
time reproductive success, or LRS; aka lifetime reproductive output, 
van Daalen & Caswell, 2017).	For	annual	reproduction,	two	system-
atic components contribute to the overall variance in offspring num-
ber: a between-age effect and a within-age effect. The between-age 
effect depends on how expected reproductive success varies with 
age, as reflected in age-specific expected fecundity values (bx)	from	

a life table. The within-age effect depends on age-specific values 
of ϕx,	which	unfortunately	are	rarely	reported	in	the	literature.	As	a	
consequence,	how	ϕx varies across species and between ages within 
species is largely unknown.

For lifetime reproduction, the relevant metric is variance in 
LRS, �2

k∙
 (Brown, 1988; Hill, 1972; Tuljapurkar et al., 2020).	Lifetime	

�2
k∙

 is affected by age-specific variation in bx and ϕx, as well as an-
other	 factor:	 longevity.	 All	 else	 being	 equal,	 individuals	 that	 live	
longer have more opportunities to reproduce, which increases 
disparity in lifetime offspring number between individuals and in-
creases �2

k∙
 .	Caswell	(2001)	and	van	Daalen	and	Caswell	(2017)	use	

the term “Markov chains with rewards” to describe the random as-
pects of this process of accumulating LRS, and variation in longev-
ity can be the dominant factor contributing to variance in LRS (e.g., 
Newton, 1989).

The number of components of reproductive success that po-
tentially could be identified is essentially unlimited, and a wide 
variety of frameworks for doing this have been proposed over the 
years	(Arnold	&	Wade,	1984; Broekman et al., 2020; Brown, 1988; 
Ferguson & Fairbairn, 2001; van Noordwijk & van Balen, 1988).	
Some researchers have paid attention to within-age contributions 
to reproductive variance, but if so it has generally been to identify 
ages for which this variance is relatively large (e.g., the Siberian jay 
example in Engen et al., 2010; the moose example considered by Lee 
et al., 2020; and the sagebrush case study by Snyder et al., 2021).	In	
linear modeling, the within-age component typically is incorporated 
into the residual or error variance and treated as noise.

All	 of	 these	 approaches	 can	 provide	 useful	 insights,	 depend-
ing on one's objectives and the kinds of data that are available, 
but	 none	 has	 focused	 on	 quantifying	 the	 overall	 contribution	
from variance in offspring number among individuals of the same 
age and sex. This is an important data gap; the residual variance 
often dominates the overall variance and, as shown in the black 
bear example below, the degree to which reproductive variance is 
overdispersed	can	vary	by	age	and	sex.	Important	insights	into	the	
potential for selection to act and the factors responsible for reduc-
ing Ne compared to N can be missed when the within-age variances 
are largely ignored.

In	 what	 follows,	 I	 first	 describe	 a	 simple	 one-way	 ANOVA	
framework within which researchers can partition variance in an-
nual reproductive success into within-age and between-age effects 
and can partition variance in LRS into within-age, between-age, 
and	longevity	effects.	Analytical	methods	are	also	developed	that	
allow researchers to calculate what fraction of these variance 
components	can	be	attributed	to	random	(Poisson)	stochasticity	in	
reproduction and survival. Modern molecular tools and improved 

K E Y W O R D S
computer simulations, effective population size, opportunity for selection, population 
genetics, reproductive skew, variance components

T A X O N O M Y  C L A S S I F I C A T I O N
Evolutionary ecology
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methods for parentage analysis make it easier than ever to collect 
empirical	data	on	variance	in	offspring	number.	Analysis	of	annual	
data is important because any long-term study begins with data 
collected for individual years, and many empirical studies never 
encompass entire lifespans for the focal species (Nishida, 1989).	
Furthermore, the distribution of annual reproductive success pro-
vides key insights into mating systems, and the most direct way to 
study sexual selection is by collecting data on all mature individu-
als that co-occur at the same time and place. That is not the case 
when	analyzing	only	LRS	data.	Understanding	the	relative	magni-
tude of between-age and within-age effects should lead to richer 
insights into mating systems and reproductive biology, as well as 
an increased ability to predict evolutionary responses to environ-
mental changes that can affect fitness.

2  |  METHODS

See Table 1 for notation and definitions of terms.

2.1  |  Demographic model

The focal population is isolated and iteroparous, with separate 
sexes.	 Analogous	 methods	 apply	 to	 both	 males	 and	 females;	
for simplicity data are considered for a single sex, nominally fe-
male. Reproduction follows the discrete-time, birth-pulse model 
(Caswell, 2001),	with	age	 indexed	by	x.	At	age	x, each individual 
produces on average bx offspring and survives to age x + 1	with	
probability vx.	Age	at	maturity	(first	age	with	bx > 0)	occurs	at	age	
α and maximum age is ω.	 Newborns	 (age	 0)	 do	 not	 reproduce,	
so bx is scaled to production of offspring that survive to age 1, 
when they can be enumerated. Cumulative survival through age 
x is lx =

∏x

i=2
vi−1, with l1 = 1.	 In	 a	 constant	 population	with	 each	

birth cohort consisting of N1 yearlings, the expected number of 
individuals of age x alive at any given time is E(Nx) = N1lx, and ex-
pected total census size is E(NT) = ∑E(Nx) = N1Σ lx. Because we are 
concerned with reproductive success, focus is on the adult popu-
lation size, NA =

∑�
x=�

Nx.
Standard life tables provide values for age-specific survival and 

fecundity, to which we add a third age-specific vital rate, �2
k,x

, which 
is the variance in offspring number (k)	around	the	mean	for	individ-
uals of age x (bx).	 In	many	 cases,	 it	 is	 convenient	 to	deal	with	 the	
parameter ϕx = �2

k,x
∕bx, which is the age-specific ratio of variance to 

mean offspring number.

2.2  |  Variance partitioning

Two	major	goals	of	this	paper	are	to	(1)	quantify	the	relative	impor-
tance of within-age and between-age effects to the overall vari-
ance	in	reproductive	success	and	(2)	show	how	these	differences	
depend on, and can be predicted from, age-specific vital rates. 

TA B L E  1 Notation.

x Age (in years)

α Age	at	maturity

ω Maximum age

q Age	at	death

n Number	of	adult	age	classes = number	of	groups	in	
ANOVA

vx Probability of surviving from age x to age x + 1

lx Cumulative probability of surviving to age x, with 
l1 = 1

N1 Cohort	size = number	of	offspring	of	one	sex	
produced per time period that survive to age 1

Nx Number of individuals of age x alive at any given 
time; Nx = N1lx

Dq Number of individuals that died after reaching age q; 
Dq = Nq–Nq + 1

NT Total number of individuals of all ages alive at any 
given time; NT = ΣNx

NA Number	of	adults	with	age ≥ α alive at any given time

Q An	index	of	sampling	intensity	relative	to	sampling	all	
offspring in a stable population

bx Expected number of offspring in one time period for 
parents of age x

ki,x Actual	number	of	offspring	produced	in	one	time	
period by parent i of age x

kx Actual	mean	k for parents of age x

k∙ Actual	mean	k for all parents

b Parametric mean offspring number for all parents in 
one time period

b̂x An	estimate	of	bx obtained by rescaling kx by 
sampling intensity; b̂x = kx ∕Q

�2
k

Parametric variance of k for all parents

�2
kx

Parametric variance of k for adults of age x

ϕx Ratio of parametric variance to mean reproductive 
success in one time period for adults of age x; ϕx 
= �2

kx
/bx

s2
kx

Unbiased	sample	variance	of	k for adults of age x

�̂
2

kx
An	estimate	of	�2

kx
 obtained be rescaling s2

kx
 according 

to Equations 7a and 7b

k∙i,q Total lifetime number of offspring produced by 
individual i that died at age q

k∙q Mean k∙i,q for all individuals that died at age q

s2
kx

Unbiased	sample	variance	of	k∙i,q for all individuals 
that died at age q

k∙∙ Mean k∙i for all individuals

�2
k∙

Parametric variance in k∙i among all N1 individuals in 
a cohort

SSB	(SSB•) Between-age	sum	of	squares	for	annual	(lifetime)	
reproduction

SSE	(SSE•) Error	or	within-age	sum	of	squares	for	annual	
(lifetime)	reproduction

(Continues)
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This	is	done	using	a	one-way	ANOVA	sums-of-squares	framework,	
which partitions sources of variation into three components (SST, 
total	 sum	of	 squares	 of	 deviations;	 SSB,	 between-group	 sum	of	
squares;	 and	 SSE,	 error	 or	 within-group	 sums	 of	 squares).	 The	
sums	of	squares	are	additive,	such	that	SST = SSB + SSE,	and	the	
groups	are	the	ages	 in	an	adult	 lifespan.	 In	Model	 II	 (random	ef-
fects)	ANOVA,	this	partitioning	commonly	is	done	in	a	“variance	
components” analysis, which directly estimates the within- and 
between-group variances that are associated with SSB and SSE. 
That approach is not used here, for two major reasons. First, var-
iance-component estimation is done in a random-effects frame-
work, whereas age is best treated as a fixed effect (Whitlock & 
Schluter, 2014).	Second,	although	variance	components	analysis	is	
fairly	straightforward	in	a	balanced	ANOVA,	group	sizes	in	a	sta-
ble population (Nx = numbers	of	adults	in	each	age	class)	generally	
decline with age. Various methods have been proposed to deal 
with	 variance	 component	 estimation	 in	 unbalanced	ANOVA	de-
signs, but all have disadvantages and no consensus has emerged 
regarding the optimal approach (reviewed by Searle (1995).

Instead,	the	approach	used	here	derives	from	the	fact	that	the	
overall parametric variance in offspring number is �2

k
= SST∕NA, 

so the parametric variance partitioning becomes �2
k,Within

 = SSE/NA 
and �2

k,Between
 = SSB/NA, such that �2

k,Within
+ �2

k,Between
= �2

k
.	It	follows	

that if parametric SSE and SSB can be estimated as a function of 
the population's vital rates and the experimental design (including 
sampling	 intensity),	 it	 provides	 a	means	 for	estimating	 the	para-
metric variance components. Below, this framework is used for 
analysis of annual and lifetime reproductive success. For simplicity 
in what follows it is assumed that α = 1,	 but	only	minor	 changes	
to	notation	are	required	if	age	at	maturity	is	>1.	If	α is probabilis-
tic rather than fixed, age-specific vital rates should reflect over-
all means and variances across mature and immature individuals 
(Waples & Reed, 2023).

2.2.1  |  Annual	reproduction

Using	 the	 notation	 described	 above,	 the	 sums-of-squares	 compo-
nents for annual reproduction are

where n is the number of adult age classes, ki,x is the number of 
offspring produced by parent i of age x, Nx is the group size for 
age class x, and kx and k∙ are group and overall mean offspring 
numbers, respectively.

2.2.2  |  Lifetime	reproductive	success

In	 the	 lifetime	 reproductive	 success	 (LRS)	 version	 of	 the	 ANOVA	
framework, individuals are grouped by age-at-death (q)	rather	than	
age, and the symbol • is used to designate lifetime variables. For 
LRS,	the	sums	of	squares	become

where Dq is the number of individuals that died after reproducing at 
age q but before reaching age q + 1,	k•i,q is the total lifetime number of 
offspring produced by individual i that died at age q, k∙q is the mean LRS 
for individuals that die at age q, and k∙∙ is mean LRS across all N1 indi-
viduals	in	a	cohort.	As	with	annual	reproduction,	SST• = SSB• + SSE•.

2.3  |  Effective population size

Mean and variance in offspring number are the major factors that 
determine effective size. For seasonal reproduction in an age-struc-
tured species, the most relevant effective-size metric is the effec-
tive number of breeders per year (Nb)	because	it	relates	directly	to	
the annual number of adults (NA).	For	each	sex,	Nb can be calculated 
using the standard discrete-generation formula for inbreeding effec-
tive size (Caballero, 1994; Crow & Denniston, 1988):

Nb can be calculated separately for males and females and an 
overall Nb obtained using Wright's (1938)	 sex-ratio	 adjustment.	
The expected annual variance in offspring number can be calcu-
lated from age-specific vital rates using the definition of a variance: 
�2
k
= E

(

k2
)

−
[

E(k)
]2
. Substituting for E(k) = k and E

(

k2
)

= Σk2
i
∕N 

and	 rearranging	 produces	 an	 expression	 for	 the	 sum	 of	 squared	
numbers of offspring:

(1a)SSE =

n
∑

x=1

∑Nx

i=1

(

ki,x−kx
)2

(1b)SSB =
∑n

x=1
Nx

(

kx−k∙
)2

(1c)SST =

Nx
∑

i=1

∑n

x=1

(

ki,x−k∙
)2

(2a)Within age − at − death: SSE ∙ =

n
∑

q=1

∑Dq

i=1

(

k∙i,q−k∙q
)2
,

(2b)Between age − at − death: SSB ∙ =
∑n

q=1
Dq

(

k∙q−k∙∙
)2
,

(2c)Across all individuals: SST ∙ =

n
∑

q=1

∑Dq

i=1

(

k∙i,q−k∙∙
)2
,

(3)Nb =
k∙NA − 1

k∙ − 1 +
�2
k

k∙

.

(4)Σk2
i
= N

(

�2
k
+ k

2
)

.

x Age (in years)

SST	(SST•) Total	sum	of	squares	for	annual	(lifetime)	
reproduction

ρα,α+ Correlation across individuals between the number 
of offspring produced at the age at maturity (α)	
and the total offspring produced during the rest 
of their lifetimes.

TA B L E  1 (Continued)
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Equation 4	can	applied	sequentially	to	each	age	and	the	overall	
total then used to calculate the overall variance. The black bear ex-
ample below illustrates these calculations and shows how to sepa-
rate the within-age and between-age contributions to reduction of 
the key ratio Nb/NA.

Nb relates directly to all adults breeding in a single year, but most 
evolutionary theory depends on effective size per generation (Ne).	
Calculating Ne in iteroparous species is complicated by the necessity 
of integrating information across multiple episodes of reproduction. 
Hill (1972)	provided	the	most	general	solution:

where T is generation length and �2
k ∙

 is calculated across the N1 indi-
viduals in a cohort.

2.4  |  Opportunity for selection

Application	 of	 Crow's	 I has been controversial, in part because it 
is a function of mean offspring number and hence depends on ex-
perimental design and sampling intensity as well as population pa-
rameters. The ΔI metric suggested by Waples (2020)	 removes	 the	
dependency on mean fitness by subtracting the expected contri-
bution to I	 arising	 from	random	 (Poisson)	variance	 in	 reproductive	
success:

This metric is suitable for use with discrete generations, or for 
analysis of annual reproductive success in age-structured species.

For lifetime reproductive success, the inverse of mean LRS ac-
counts	 for	 random	reproductive	 success	within	years	and	ages.	 In	
addition, there is a contribution to lifetime I• from random variation 
in longevity, so the ΔI metric relevant to LRS is (Waples & Reed, 2023)

with calculation of C as described below.

2.5  |  Sampling designs

For both annual and lifetime reproduction, two sampling designs 
were	considered.	In	Case	1	(comprehensive	sampling),	all	offspring	
from a stable population are sampled and assigned to parents. This 
is the most straightforward design to evaluate because results for 
empirical data can be related directly to analytical expectation based 
on parametric vital rates. For annual reproduction in a species with 
an even primary sex ratio, a stable population of NA adults produces 
2N1 offspring each year (N1	of	each	sex),	 so	under	comprehensive	
sampling the overall mean offspring number is k∙ = 2N1 ∕NA. For life-
time reproduction, a stable population occurs when the N1 individu-
als in a single-sex cohort each produce an average of two offspring 

over their lifetime, which again means that a total of 2N1 offspring 
are sampled under Case 1. The difference is that for annual repro-
duction, the offspring are assigned to NA =

∑n

x=1
Nx potential parents 

while the number of potential parents in each LRS cohort is only N1, 
so mean offspring number per parent for annual reproduction is a 
fraction of what it is for LRS.

Case	2	(generalized	sampling)	includes	Case	1	as	a	special	case	
but allows for a variety of different experimental designs and a 
range	of	sampling	intensities.	Often	only	a	subset	of	offspring	are	
sampled, leading to NOffspring < 2N1. Conversely, if young juveniles 
are sampled in a highly fecund species, NOffspring can be >>2N1. 
Divergence of NOffspring from the stable-population expectation 
leads to variation in realized mean offspring number. The ratio 
Q = NOffspring/(2N1)	is	a	useful	index	of	sampling	intensity,	with	Q = 1	
replicating	Case	1	(comprehensive	sampling).	It	follows	that	for	an-
nual reproduction E(kx) = Qbx. Variation in sampling intensity adds 
complexity to analysis of empirical data because, except in the spe-
cial case of a Poisson distribution, the variance in offspring num-
ber is positively correlated with the mean (Crow & Morton, 1955; 
Waples, 2002, 2020).	This	in	turn	complicates	comparisons	across	
populations and years, and even between males and females when 
the sex ratio is uneven.

If	Q ≠ 1,	it	is	desirable	to	standardize	the	analyses	by	estimating	
the expected variance in offspring number when the mean is the 
value that will produce a stable population (as suggested by Crow 
& Morton, 1955	 and	many	 others).	 Using	 our	 notation	 for	 annual	
reproduction, the rescaling can be done using an age-specific ver-
sion of the method of Crow and Morton (1955),	 as	 modified	 by	
Waples (2002):

The unbiased sample variance for age x in the raw data is 
s2
kx
=
∑Nx

i=1

�

ki,x−kx
�2

∕
�

Nx − 1
�

, and �̂2
kx

 is a rescaled version that rep-
resents what the variance would be expected to be if sampling had 
been	at	 the	 level	 that	would	produce	mean	offspring	number = bx ,	
instead	 of	 the	 actual	 raw	 mean = kx. Hence, �̂2

kx
 is an estimate of 

the parametric age-specific variance in offspring number, obtained 
by rescaling the raw data. Since E

(

bx

kx

)

= 1∕Q and s2
kx
∕kx = ϕx,raw, 

Equation 7a can be written as

Crow and Morton (1955)	 derived	 their	 equation	 for	 Q > 1,	 in	
which case Equations 7a and 7b provides the expected variance if 
offspring had been randomly subsampled until mean offspring num-
ber reached the target level (bx).	Waples	 (2002)	 showed	 that	 the	
same formula applies when Q < 1,	in	which	case	�̂2

kx
 is the expected 

result if the same offspring distribution had been sampled more 
intensively.

This rescaling is done separately for each age or age-at-death, but 
using a common Q based on the total number of offspring sampled. 

(5)Ne ≈
4N1T

�2
k ∙

+ 2
,

(6)ΔI = I − 1∕k∙

ΔI∙ = I ∙ −
1

k∙∙
− C,

(7a)s2
kx,scaled

= �̂
2

kx
= bx

[

1 +
bx

kx

(

s2
kx

kx
− 1

)]

.

(7b)s2
kx,scaled

= �̂
2

kx
= bx

[

1 +
1

Q

(

ϕx,raw − 1
)

]

.
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6 of 17  |     WAPLES

For	analysis	of	LRS,	the	above	equation	is	valid	after	replacing	x with 
q for age-at-death, and replacing the annual metrics with their re-
spective lifetime analogues.

The following assumptions are made regarding the estimation 
process:

• Means and variances in offspring number are calculated with re-
spect	to	the	total	number	of	adults	alive	at	a	given	time.	Including	
juveniles, which by definition cannot produce offspring, has 
predictable	 consequences	 related	 to	 zero-inflation	 (Waples	 &	
Reed, 2023)	but	is	not	considered	here.

• The researcher has known or estimated ages for all potential 
parents in the population, so the vector Nx is known or can be 
estimated.

• Empirical data provide sample estimates of relative fecundity at 
age (kx)	and	age-specific	variance	in	offspring	number	(s2kx),	condi-
tional on kx.

• From the vector of relative kx estimates, the researcher can esti-
mate the bx	values	required	to	produce	a	stable	population,	using	
the expectation that Σlxbx = 2.	The	vector	lx can be estimated from 
observed Nx values, or from independent data.

• The empirical estimate of Q to be used in rescaling the raw data is 
calculated as Q = Σlxkx/2.

2.6  |  Simulations

Computer simulations were run to confirm the accuracy of analytical 
results and to evaluate performance of the estimators. Main features 

of the simulations are summarized here; more details and computer 
code	can	be	found	in	Supporting	Information.	All	simulations	were	
done in R (R Core Team, 2021)	 and	modeled	hypothetical	popula-
tions with vital rates shown in Table 2. For both annual and lifetime 
reproduction, simulations were conducted for Case 1 and Case 2 
sampling.	 In	Case	1,	 the	comprehensive	sampling	effort	was	 fixed	
at NOffspring = 2N1 (Q = 1),	and	N1 was varied across a 40-fold range 
[50–2000]	to	evaluate	effects	of	population	size	(and	hence	group	
size	in	the	ANOVA	analyses).	For	Case	2,	N1 was set to either 100 or 
500,	and	sampling	effort	was	varied	across	an	order-of-magnitude	
range (Q = [0.2,0.4,1,2]).

3  |  RESULTS

3.1  |  Annual reproduction

3.1.1  |  Parametric	variance	partitioning

To evaluate performance, it is necessary to establish what the true 
sums	of	squares	are,	which	here	are	taken	to	be	expected	values	in	
a stable population with demographics governed by parametric vital 
rates. These population parameters apply to a scenario in which all 
2N1 offspring in a cohort have been sampled and assigned to parents, 
in which case E(kx) = bx and E(�2

k,x
) = ϕxbx for all ages, and E

(

k∙
)

= b, 
where b = 2N1 ∕NA is the parametric mean offspring number across 
adults	 of	 all	 ages.	 The	 parametric	 sums	 of	 squares	 expectations	
are	obtained	by	substituting	these	terms	into	Equations	1a–1c (see 
Appendix	S1	for	details):

TA B L E  2 Top:	Vital	rates	for	a	hypothetical	population	having	5	age	classes,	constant	survival	(vx)	at	50%/year,	maturity	at	age	1,	fecundity	
(bx)	that	is	either	constant,	increases,	or	decreases	with	age,	and	variance	in	offspring	number	among	individuals	of	the	same	age	that	is	either	
random (ϕ = 1)	or	substantially	overdispersed	(ϕ = 10).	bx values have been scaled to values that will produce a stable population. Computer 
simulations used different combinations of these vital rates. Bottom: The range of population sizes modeled in the simulations. The vector 
of age-specific Nx	values	(which	are	also	the	age-class	group	sizes	in	the	ANOVA	analyses	for	annual	reproduction)	are	determined	by	the	
relationship Nx = lxN1, where lx is cumulative survivorship through age x.	In	parentheses	after	the	Nx values are the numbers of individuals (Dq)	
that die after reaching age q but before reaching age q + 1.	The	Dq	values	are	the	group	sizes	in	the	ANOVA	analyses	of	lifetime	reproductive	
success.	In	this	example,	age	at	maturity	is	1,	so	age	(x)	and	age	at	death	of	adults	(q)	have	the	same	range	(1–5).

Age (x) vx

Fecundity (bx) ϕ

Constant Increasing Decreasing Random Overdispersed

1 0.5 1.03 0.56 1.24 1 10

2 0.5 1.03 1.12 0.99 1 10

3 0.5 1.03 1.69 0.74 1 10

4 0.5 1.03 2.25 0.50 1 10

5 0 1.03 2.81 0.25 1 10

x or q vx lx Nx (Dq)

1 0.5 1 50	(25) 100	(50) 250	(125) 500	(250) 1000	(500) 2000	(1000)

2 0.5 0.5 25	(12) 50	(25) 125	(62) 250	(125) 500	(250) 1000	(500)

3 0.5 0.25 13	(7) 25	(12) 63	(32) 125	(62) 250	(125) 500	(250)

4 0.5 0.125 6	(3) 13	(7) 31	(15) 63	(32) 125	(62) 250	(125)

5 0 0.0625 3	(3) 6	(6) 16	(16) 31	(31) 63	(63) 125	(125)
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    |  7 of 17WAPLES

The group-size vector is Nx = N1lx, so Equations 8a 
and 8b can be written as SSEparametric = N1

∑n

x=1
lx�

2
k,x

 and 
SSBparametric = N1

∑n

x=1
lx
�

bx−b
�2. Therefore,

which means that the ratios SSEparametric ∕SSTparametric and 
SSBparametric ∕SSTparametric are independent of population size, provided 
that vital rates do not change with abundance.

3.1.2  |  A	null	model

A	variety	of	null	models	might	be	constructed	for	reproductive	suc-
cess (see Waples & Reed, 2023	for	details),	but	a	simple	one	in	wide-
spread use assumes that all potential parents function as a single 
Wright-Fisher	population,	with	random	mating	and	equal	expecta-
tions of reproductive success, E(k).	Under	 those	conditions,	 for	all	
ages bx = E(k) = b and ϕx = 1, which leads to

As	illustrated	below,	this	null	model	can	provide	a	useful	refer-
ence point for analysis of empirical data.

3.1.3  |  Estimation

For empirical data, Equations 8a and 8b are modified as follows (see 
Appendix	S1	for	details):

The first term in Equation 10b accounts for random contribu-
tions to kx, and (n–1)/n reflects the fact that the sample kx values are 
constrained to have an overall weighted mean of k∙, so the number 
of degrees of freedom is one less than the number of groups (as it is 
for	the	between-groups	sum	of	squares	in	ANOVA).

Although	group	sizes	are	fixed	constants,	expectations	for	s2
kx

 and 
(

kx − k∙
)

 depend on the sampling regime, as discussed below.

Case 1: Comprehensive sampling
With comprehensive sampling, variance rescaling is not necessary, 
so E

(

s2
kx

)

= ϕxbx and E
(

kx − k∙
)

= E
(

kx) − E(k∙
)

=
(

bx − b
)

, and

The unbiased estimator of the within-age variance �2
k,x

 is calcu-
lated from the raw data as

An	estimator	of	the	overall	with-age	sum	of	squares	is	then

To estimate parametric SSB from empirical data it is necessary 
to subtract the expected value of the random component, leading to

where �̂2
Within

=
∑n

x=1
�̂
2

k,x
.

Case 2: Generalized sampling designs
For generalized sampling, expectations for the raw, empirical sums 
of	squares	as	a	function	of	Q and parametric vital rates are provided 
in	Appendix	S1. The next step is to develop unbiased estimators of 
the parametric variance components. Estimators used in this step 
are:

and �̂2
kx
= s2

kx,scaled
 is computed as in Equation 12. These estimators 

are then used in Equation 13 to get the overall within-group sum of 
squares	estimator	for	generalized	sampling:

For SSB, it is simplest to rescale the vital rates before accounting 
for	random	differences	 in	age-specific	 fecundity	 (see	Appendix	S1 
for	details).	The	unbiased	estimator	of	SSB	is

(8a)SSEparametric =

n
∑

x=1

Nx�
2
k,x

=

n
∑

x=1

Nxϕxbx

(8b)SSBparametric =
∑n

x=1
Nx

(

bx−b
)2
.

SSEparametric

SSTparametric

=
N1

∑n

x=1
lx�

2
k,x

N1

�

∑n

x=1
lx�

2
k,x

+
∑n

x=1
lx
�

bx−b
�2
� =

∑n

x=1
lx�

2
k,x

∑n

x=1
lx�

2
k,x

+
∑n

x=1
lx
�

bx−b
�2

,

(9a)SSEparametric,null =

n
∑

x=1

NxE(k) = b

n
∑

x=1

Nx = bNA

(9b)SSBparametric,null =
∑n

x=1
Nx

[

E(k)−E(k)
]2

= 0.

(10a)E
(

SSEempirical

)

= E

[

n
∑

x=1

∑Nx

i=1

(

ki,x−kx
)2

]

=

n
∑

x=1

NxE
(

s2
kx

)

,

(10b)

E
(

SSBempirical

)

=

(

n − 1

n

)

∑n

x=1
E
(

s2
kx

)

(random) +
∑n

x=1
Nx

[

E
(

kx−k∙
)]2

(deterministic)

(11a)E
(

SSEcomprehensive

)

=

n
∑

x=1

Nxϕxbx = SSEparametric

(11b)

E
(

SSBcomprehensive

)

=

(

n−1

n

)

∑n

x=1
E
(

s2
kx

)

+
∑n

x=1
Nx

(

bx−b
)2

=

(

n−1

n

)

∑n

x=1
ϕxbx+SSBparametric.

(12)�̂
2

kx
= s2

kx
=

∑Nx

i=1

�

ki,x−kx
�2

Nx − 1
.

(13)ŜSEcomprehensive =
∑n

x=1
Nx �̂

2

kx
.

(14)
ŜSBcomprehensive=SSBraw−E

(

SSBrandom

)

=
∑n

x=1
Nx

(

kx−k∙
)2

−

(

n−1

n

)

�̂
2

Within

,

(15a)b̂x =

(

1

Q

)

k1,x

(15b)b̂ =

(

1

Q

)

k∙

(16a)ŜSE =
∑n

x=1
Nx �̂

2

kx
.

(16b)
ŜSB=SSBscaled−E

(

SSBscaled,random

)

=
∑n

x=1
Nx

(

b̂x− b̂
)2

−

(

n−1

n

)

∑n

x=1
�̂
2

k,x
.
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8 of 17  |     WAPLES

3.1.4  |  Simulations

Simulation results for annual reproduction are shown in Figure 1, 
Figures S1 and S2, and Box S1.	Across	the	scenarios	evaluated,	the	
estimators of SSB, SSE, and SSE/SST were asymptotically unbi-
ased for moderate to large sampling efforts and population sizes 
(hence	group	sizes).	Biases	that	did	occur	for	the	smaller	values	of	Q 
(where	only	20–40%	of	the	offspring	were	sampled)	and	group	size	
(with N1 = 50,	the	oldest	2	age	classes	have	only	3	and	6	individuals)	
generally applied to SSB but not SSE. Because the within-age sum 
of	 squares	 is	 generally	much	 larger	 than	 the	between-age	 sum	of	
squares	for	annual	reproduction,	any	bias	to	SSB	causes	proportion-
ally	less	bias	to	the	ratio	SSE/SST,	which	is	the	primary	quantity	of	
interest. Details include the following:

• Parametric SSE and SSB both increase linearly with population/
group size, but the random component to empirical SSB does not. 
As	a	consequence,	any	bias	associated	with	adjusting	for	this	ran-
dom component becomes relatively less important as group size 
increases (see Box S1).

•	 Under	a	null	model	with	no	true	differences	 in	expected	fecun-
dity with age (all bx = b),	ŜSB was close to 0 for all scenarios, but 

with a slight tendency for underestimation (presumably because 
the	 correction	 for	 the	 random	 component	 was	 too	 large).	 This	
bias becomes smaller as sampling effort and group size increase 
(Figure S1).

•	 If	 fecundity	 increases	with	age	 (a	common	pattern	 in	many	spe-
cies),	 ŜSE remains unbiased but ŜSB slightly overestimates para-
metric SSB, leading to a slight underestimate of SSE/SST. However, 
the resulting biases are small even for the smallest Q and N1 (the 
most extreme bias occurred with Q = 0.2	and	N1 = 100,	where	es-
timated	SSE/SST	(0.78)	was	4%	higher	than	the	parametric	value,	
and this bias became negligible for N1 = 500;	Figure 1).	If	fecundity	
decreases	with	age	(as	occurs	with	reproductive	senescence),	SSE	
is not affected but SSB is reduced compared to the increasing-fe-
cundity scenario, which increases SSE/SST (Figure S2).

• For generalized sampling, raw empirical SSE and SSB (repre-
sented by filled black circles in Figures 1 and 2)	agreed	closely	
with	analytical	expectations	(solid	black	lines).	Parametric	expec-
tations under comprehensive sampling are shown in dotted red 
lines, which intersect the trajectories of the raw data only for 
Q = 1,	which	 represents	comprehensive	sampling.	Red	 triangles	
show how close rescaled estimates come to these parametric 
expectations.

F I G U R E  1 Results	of	simulations	modeling	annual	reproduction	in	a	hypothetical	species	for	which	fecundity	increased	linearly	with	age	
and variance in offspring number was random for individuals of the same age (all ϕx = 1;	see	Table 2).	Left	panels:	Results	for	comprehensive	
sampling	(Case	1)	for	a	40-fold	range	of	population	sizes,	as	indexed	by	the	N1 values on the x axis. See Figure S1 for comparable results for a 
null model with parametric expectations given by Equations 9a and 9b. Black circles and black solid lines show observed and expected results, 
respectively.	Center	and	right	panels:	Results	for	generalized	sampling	(Case	2)	for	four	different	sampling	intensities,	indicated	on	the	x axis by 
Q = NOffspring/(2N1) = [0.2,	0.4,	1,	2].	Black	circles	and	black	solid	lines	show	observed	and	expected	results,	respectively,	using	the	raw	data;	red	
triangles and red dotted lines show observed and expected results after rescaling the data per Equations 7a and 7b. Center panels show results 
for N1 = 100,	and	right	panels	show	results	for	N1 = 500.	In	all	cases,	observed	results	are	means	across	10,000	replicates.
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    |  9 of 17WAPLES

• Raw SSE and raw SSB both increase with sampling effort and 
hence mean offspring number, but they do so at different rates. 
As	a	consequence,	the	key	ratio	SSE/SST	based	on	raw	data	can	
vary substantially based on sampling effort. For example, for 
the scenario in Figure 1 where fecundity increased with age, the 
proportion	of	the	total	sum	of	squares	due	to	within-age	effects	
ranged from >0.9	for	Q = 0.2	to	<0.6 for Q = 2	(black	symbols	and	
solid black lines in the bottom panels for N1 = both	100	and	500).	
All	of	these	samples	were	generated	by	a	single	(albeit	hypothet-
ical)	population	having	one	parametric	 set	of	vital	 rates,	 so	 this	
result illustrates the danger of using raw, unscaled data to draw 
inferences about variance partitioning.

• These results for the raw empirical data indicate that any biases 
associated with generalized sampling designs primarily arise 
during the variance-rescaling process that uses the non-linear 
Equations 7a and 7b.	In	this	equation,	1/Q becomes a scaling fac-
tor that magnifies any small biases in the raw data.

3.1.5  |  A	worked	example—Black	bears	
from Michigan

During 2002–2010, Michigan state biologists estimated ages (from 
teeth)	 for	over	2500	black	bears	 (Ursus americanus)	killed	by	hunt-
ers. This example focuses on data collected from genetic parentage 

analysis of a subset of bears, which yielded 221 matches of offspring 
to both parents (Moore et al., 2014)	and	allowed	estimation	of	age-
specific vital rates (Table 3).	Black	bears	can	 live	at	 least	20 years,	
but individuals older than 10 are uncommon, so those were grouped 
into a single plus age class. Males mature at age 2; females gener-
ally mature age 3 and can have litters of up to 4–6 cubs. Primary 
sex ratio is even, but males have lower survival so adult females are 
more numerous.

Cumulative survival for males though age 10 was l10 = 0.022,	
and all older males were lumped into a single ‘plus’ (age 11+)	
age class, with overall Σl11+ = 0.042.	 Assuming	 a	 fixed	 number	
of N1 = 260	yearling	males	each	year,	 the	rest	of	the	age	classes	
have Nx = lx*N1 individuals, with a total of NA = 448	age	2+ adults. 
Sample estimates of age-specific fecundity increased monotoni-
cally from k2 = 0.027 for age 2 to k10 = 0.377 for age 10, and (ex-
cept	for	age	2)	the	associated	sample	variances	(s2

kx
)	were	all	larger	

than the means, so raw ϕ	values	were > 1.	Overall	weighted	mean	
sample offspring number is k∙ =

ΣkxNx

NA

= 0.0584.	 In	 a	 stable	 pop-
ulation	with	 eqwual	 primar	 sex	 ratio	 (as	 applies	 to	 black	 bears)	
Σlx*kx = 2, but for the raw data Σlx*kx = 0.0998, so the index of 
sampling intensity was Q = 0.0998/2 = 0.05,	 indicating	 very	
sparse sampling.

To	estimate	parametric	sums	of	squares,	the	first	step	is	to	res-
cale the raw data to values expected for a stable population. For 
each age, b̂x and �̂2

k,x
 are computed from Equations 15a and 15b, 

and the overall mean is estimated as b̂ =
(

1

Q

)

k∙ =
0.0584

0.05
= 1.17. The 

F I G U R E  2 As	in	Figure 1, except showing results for lifetime reproductive success. For the Generalized sampling scenarios, center 
panels show results for ϕ = 1	and	right	panels	show	results	for	ϕ = 10,	in	both	cases	with	N1 = 500	and	increasing	fecundity	with	age.	For	
comprehensive sampling, ϕ = 1	with	increasing	fecundity	with	age.
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10 of 17  |     WAPLES

rescaled age-specific ϕx values are considerably higher (up to 22.2 
for	age	7	males),	indicating	that	overdispersion	is	very	substantial.

These rescaled variables are then used in Equations 16a and 16b 
to	estimate	parametric	sums	of	squares	 (Table 3).	Overall	 rescaled	
ŜSE	 is	4048.5.	Total	SSB	from	the	rescaled	data	 is	698.1,	of	which	
[

(n − 1)∕n
]

∗Σ�̂
2

kx
= 0.9∗274.7 = 247.2 can be attributed to random 

differences in estimated age-specific fecundity. Therefore, ŜSB is 
698.1–247.2 = 450.8.	Of	the	total	ŜSE, how much can be attributed 
to	stochastic	effects?	Under	a	common	null	model,	the	distribution	
of offspring number within ages is Poisson, implying all ϕx = 1	and	
all �̂2

k,x
= b̂x,	 and	 these	 terms	sum	to	524.	Of	 the	within-ages	com-

ponent, therefore, only a small fraction (~13%)	 can	 be	 explained	
by random, Wright-Fisher reproduction. The pie chart in Figure 4 
depicts	 partitioning	 of	 the	 overall	ANOVA	 sums	of	 squares.	Most	
(85%)	of	the	total	SST	is	due	to	within-age	effects,	and	most	of	that	
is attributable to greater-than-random variance in offspring number 
among	males	of	the	same	age.	Although	fecundity	increases	sharply	
through at least age 10 in male black bears (Table 3),	effects	of	this	
on variance in offspring number are dwarfed by within-age effects.

The last column in Table 3 shows the parametric expectation for Σk2
i
 

for each age, calculated as in Equation 4.	Across	all	ages,	Σk2i 	is	5359,	so	
the annual population variance is �2

k
=

Σk2
i

NA

−
(

b̂
)2

=
5359

448
− 1.172 = 10.6. 

Substituting values for the annual mean and variance in offspring num-
ber into Equation 3 produces Nb = 56.7

1 and Nb/NA = 56.7/448 = 0.126—
so in this example annual effective size of male black bears is 
one-eighth	of	the	number	of	adult	males.	Under	a	null	Wright-Fisher	
model, E

(

�2
k

)

= b̂ ,	 leading	 to	Nb/NA = 1,	 so	 all	 the	 reductions	 in	 the	
Nb/NA ratio can be attributed to greater-than-random variance within 
and between ages. From above, the greater-than-random component 
to SST is SSE>random + SSB>random = 3524 + 451 = 3975,	of	which	88.7%	

is	from	within-age	effects	and	11.3%	from	between-age	effects.	The	
total reduction in the Nb/NA	ratio	is	87.4%,	of	which	the	fraction	0.887,	
or	77.4%,	is	attributable	to	overdispersed	within-age	variance,	and	the	
remaining	9.9%	 reduction	 is	due	 to	 systematic	 changes	 in	 fecundity	
with age.

For the annual male black bear data, Crow's I is 
�2
k

(

b̂
)2 =

10.6

1.172
= 7.74. 

Of	 this,	 1/b̂ = 0.85	 can	be	 attributed	 to	 random	 reproductive	 suc-
cess,	 so	 the	 greater-than-random	 component	 of	 the	 Opportunity	
for Selection is ΔI = I −

1

b̂
= 7.74 − 0.85 = 6.89. These non-random 

contributions	 to	 the	Opportunity	 for	 Selection	 can	be	partitioned	
in the same way as the reductions in Nb/NA:	88.7%	of	ΔI = 6.11	is	at-
tributable to overdispersded within-age variance, and the remainder 
(0.78)	to	differences	in	fecundity	with	age.

Table S1 replicates these analyses for female black bears, for 
which both changes in fecundity with age and age-specific ϕx are 
smaller than in males. The smaller magnitudes of nonrandom SSE 
and SSB cause a smaller reduction in effective size in females, so the 
Nb/NA	ratio	(0.271)	is	a	bit	over	twice	as	large	as	for	males.	However,	
females mimic males in that the overwhelming majority of reductions 
in Nb/NA are due to overdispersed within-age variance rather than 
changes in fecundity with age. Similarly, in both sexes the non-ran-
dom	component	of	the	Opportunity	for	Selection	 is	dominated	by	
within-age effects. The patterns are displayed visually in Figure 4.

3.2  |  Lifetime reproductive success

The	ANOVA	sums	of	squares	 for	 lifetime	SSB•,	SSE•,	and	SST•	 in	
Equations	2a–2c	 are	 superficially	 similar	 in	 form	 to	Equations	1a–
1c for annual reproduction, but with an important difference: for 

TA B L E  3 Variance	partitioning	analysis	for	seasonal	reproduction	by	male	black	bears	from	Michigan.

Raw data Scaled data Sums of squares

Age vx lx kx s2
kx

lxkx ϕx Nx b̂x �̂
2

kx
ϕx SSE SSErandom SSB �k2

i

1 0.639 1.000 0.000 NA 0.0000 – 260 – – – – – – –

2 0.559 0.639 0.027 0.026 0.0173 0.963 166 0.541 0.1 0.3 23.1 89.8 65.6 72

3 0.670 0.357 0.030 0.032 0.0107 1.067 93 0.601 1.4 2.3 130.6 55.9 30.0 164

4 0.670 0.239 0.030 0.033 0.0072 1.100 62 0.601 1.8 3.0 112.0 37.3 20.0 134

5 0.670 0.160 0.062 0.069 0.0099 1.113 42 1.243 4.1 3.3 170.3 52.2 0.2 235

6 0.670 0.107 0.121 0.166 0.0130 1.372 28 2.425 20.5 8.5 574.1 67.9 44.1 739

7 0.670 0.072 0.156 0.321 0.0112 2.058 19 3.127 69.4 22.2 1318.9 59.4 72.8 1505

8 0.670 0.048 0.196 0.329 0.0095 1.679 13 3.929 57.4 14.6 745.7 51.1 98.9 946

9 0.670 0.032 0.238 0.354 0.0077 1.487 8 4.770 51.4 10.8 411.0 38.2 103.7 593

10 0.670 0.022 0.377 0.454 0.0082 1.204 6 7.556 38.5 5.1 230.9 45.3 244.7 574

11+ 0.000 0.042 0.122 0.191 0.0052 1.566 11 2.445 30.2 12.3 331.8 26.9 17.9 398

Totals 0.0998 Ages	2 +  448 274.7 4048.5 524.0 698.1 5359

Note:	Assuming	constant	production	of	N1 = 260	yearling	males,	these	vital	rates	would	produce	an	adult	male	population	size	of	448	age	2+ 
individuals. Columns under “Raw data” show estimates from field samples reported by Waples et al. (2018).	Columns	under	“Scaled	data”	show	
variables that have been rescaled based on the estimated index of sampling intensity Q = 0.05.	The	“Sums	of	squares”	columns	show	age-specific	
within-age	(SSE)	and	between-age	(SSB)	components	based	on	scaled	vital	rates,	and	the	Σk2

i
	column	(which	shows	age-specific	squared	numbers	

of	offspring	per	individual)	is	used	to	compute	overall	annual	variance	in	offspring	number	and	annual	effective	size,	Nb. See Table 1 for notation, 
Table S1 for comparable data for females, and text for explanation of the calculations.
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    |  11 of 17WAPLES

analysis of LRS, groups are defined by age-at-death, which means 
that all groups with q > 1	 record	cumulative	LRS	over	two	or	more	
years.	As	shown	in	Supporting	Information,	a	consequence	of	this	is	
that the group-specific terms for SSE• take the form

This means that within-group variances are simple additive func-
tions of age-specific variances only if an individual's reproduction at 
one	age	does	not	affect	its	survival	or	reproduction	at	any	subsequent	
age. That in fact is a common assumption in modeling age-structured 
populations (e.g., Felsenstein, 1971; Waples et al., 2011),	and	to	make	
the analytical expectations tractable that assumption is adopted here.

In	many	species,	however,	these	covariance	terms	are	not	expected	
to be 0. Persistent individual differences occur when certain individuals 
are consistently above or below average for their age and sex at produc-
ing offspring (Lee et al., 2011),	and	these	persistent	differences	lead	to	
positive covariances in offspring production over time. Conversely, neg-
ative covariances occur when reproduction by an individual in one time 
period	negatively	affects	its	reproduction	in	subsequent	time	periods.	
Transient negative effects of this type are found in many species that 
exhibit skip or intermittent breeding (Shaw & Levin, 2013; Waples & 
Antao,	2014),	and	permanent	negative	effects	can	occur	if	reproduction	
adversely affects survival (e.g., McCleery et al., 1996).	These	temporal	
covariances do not affect calculation of SSE ∙ from empirical data using 
Equation 2a, but to the extent that they do occur they will be reflected 
in	 the	magnitude	of	 the	within-group	sum	of	 squares	and	will	 affect	
agreement with expectations based on the simpler model.

SSB ∙ deals with group means rather than individuals and is not 
sensitive to the temporal correlations of individual reproductive suc-
cess that affect SSE ∙. However, the group means k∙q. are cumulative 
sums of LRS over time and hence are positively correlated. For ex-
ample, k∙2 = k1 + k2 and k∙3 = k1 + k2 + k3 share terms for mean LRS 
for individuals that die at ages 2 and 3. Furthermore, the weighted 
sums	of	squares	and	the	weighted	variance	are	both	affected	by	the	
correlation between the patterns of change in group sample size and 
fecundity change with age (see Box S2	for	details).

3.2.1  |  Parametric	variance	components

As	with	annual	reproduction,	parametric	values	are	considered	to	be	
expected values in a stable population in which all lifetime offspring 
have been assigned to the N1 potential parents in a cohort. Since the 
population is stable, overall mean offspring number for the cohort 
is k∙∙ = 2.

Under	those	conditions,	the	parametric	sums	of	squares	for	LRS	
are	(see	Appendix	S1	for	details):

Two	 factors	 contribute	 to	 the	 squared-difference	 terms	 in	
Equation 17b:	 (1)	 changes	 in	 fecundity	 with	 age,	 which	modulate	
the magnitude of 

∑q

x=1
bx,	 and	 (2)	differences	among	 individuals	 in	

age-at-death (longevity, indexed by q).	 These	 two	 factors	 can	 be	
separated by holding fecundity constant with age, which eliminates 
factor 1, so the residual SSB ∙ can all be attributed to variation in 
longevity.	If	all	bx = b, then expected LRS for an individual that dies 
at age q is qb,	so	the	above	equation	simplifies	to

while the remainder represents the between-age component of para-
metric SSB ∙.

3.2.2  |  Estimation

Case 1: Comprehensive sampling
Following the framework used for annual reproduction, a logical es-
timator	of	the	overall	with-group	sum	of	squares	for	lifetime	repro-
duction is

where �̂2
k∙,q

 is the unbiased estimate of the variance within each group.
For comprehensive empirical data,

and an unbiased estimator for SSB ∙ is

The estimator ŜSB∙ accounts for the same two factors that con-
tribute to parametric SSB ∙: changes in fecundity with age, and differ-
ences in longevity. ŜSB∙longevity can be calculated from Equation 17c 
using the estimator of overall mean annual offspring number (b̂)	from	
comprehensive sampling.

Case 2: Generalized sampling designs
As	before,	we	consider	sampling	at	level	Q compared to comprehen-
sive sampling and first develop an expectation for the raw sums of 
squares	as	a	function	of	Q	(see	Appendix	S1	for	those	results).	Next	
we	want	to	rescale	the	raw	(empirical)	variances	to	expected	values	
under comprehensive sampling. With analogy to Equations 7a, 7b, 
15a and 15b,

SSE∙q = Dq

[

var
(

ki,1
)

+ var
(

ki,2
)

+ … var
(

ki,q
)

+ 2
∑q

j<k
cov

(

ki,j , ki,k
)

]

.

(17a)SSE∙parametric =
∑n

q=1
Dq

∑q

x=1
ϕxbx ,

(17b)SSB∙parametric =
∑n

q=1
Dq ∗

((

∑q

x=1
bx

)

−2
)2

.

(17c)SSB∙parametric,longevity =
∑n

q=1
Dq

(

qb−2
)2
,

(18a)ŜSE∙ =
∑n

q=1
Dq�̂

2

k∙,q
,

E
(

SSB∙comprehensive

)

=
n − 1

n

∑n

q=1
�̂
2

k∙,q
+
∑n

q=1
Dq ∗

((

∑q

x=1
bx

)

−2
)2

,

(18b)ŜSB∙comprehensive = SSB∙raw −
n − 1

n

∑n

q=1
�̂
2

k∙,q
.

(19a)Σ̂bx =

(

1

Q

)

k∙q

(19b)b̂∙ =

(

1

Q

)

k∙∙
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Leading to

As	with	annual	reproduction,	to	estimate	parametric	SSB•	under	
generalized sampling, the first step is to rescale the age-specific vital 
rates, producing:

and

3.2.3  |  Simulations

In	many	respects,	simulation	results	for	lifetime	reproduction	paral-
leled those for annual reproduction:

• ŜSE∙ is essentially unbiased even for small group sizes and low 
sampling effort;

• ŜSB∙ shows some minor bias for low N1 that largely disappears 
with larger group sizes;

•	 Except	 under	 comprehensive	 sampling,	 raw	 LRS	 data	 require	
rescaling to produce unbiased estimates of parametric sums of 
squares.

A	few	important	differences	are	also	worth	noting.	First,	under	
the null model with constant fecundity, SSB ∙ does not have an ex-
pectation	of	0,	as	it	does	for	annual	reproduction.	Individuals	that	die	
at different ages differ in number of opportunities to participate in 
reproduction and hence have different expectations of LRS. Results 
for SSB ∙ for the null model thus can all be attributed to variation in 
longevity (Figures S2 and S4).	All	else	being	equal,	therefore,	SSB ∙ 
makes a relatively larger contribution to overall SST ∙ than annual 
SSB does to SST.

A	second	and	related	point	is	that	the	pattern	of	change	(if	any)	in	
fecundity with age has a strong effect on SSB ∙. This does not lead to 
bias, because these effects are fully accounted for in Equations 18b 
and 20b. However, as shown in Figure S4 and Box S2, if fecundity 
declines	with	age	(as	it	can	with	reproductive	senescence),	total	SSB ∙ 
can be less than would be expected if fecundity were constant (i.e., 
total SSB ∙ < SSB∙longevity).	 The	 interpretation	 in	 this	 case	 would	 be	
that the pattern of between-age differences in fecundity reduces 
overall SSB ∙ compared to what it would be if SSB ∙ only reflected 
differences in longevity.

Finally, positive or negative correlations in reproduction over 
time can have a strong influence on SSE ∙, whereas they have no 
effect on annual SSE because the latter considers only one time 
period. The example in Figure 3 simulated a population using a 

generalized Wright-Fisher model (Waples, 2022),	where	individuals	
were	allowed	to	have	unequal	probabilities	of	producing	offspring,	
as indicated by a vector of parental weights, W	(see	Appendix	S1 
for	details).	Randomly	scrambling	the	weights	each	year	satisfies	
the assumption of independence across time, producing results 
shown in the first half of the replicates in Figure 3.	Allowing	indi-
viduals to retain their weights throughout their lifetimes (second 
half	of	the	replicates)	creates	persistent	individual	differences	and	
positive correlations in individual reproductive success over time, 
which substantially increase SSE ∙ (and hence SST ∙)	but	have	no	ef-
fect on SSB ∙.

3.2.4  | Worked	example	–	great	tits

The great tit (Parus major)	is	a	woodland	passerine	with	a	wide	dis-
tribution	in	Europe,	including	the	UK.	Four	Dutch	populations	have	
been	 intensively	 monitored	 since	 the	 1950s	 (Visser	 et	 al.,	 2021).	
Study sites are wooded areas fitted with an abundance of nest 
boxes; each year, every female that lays a clutch is captured and her 
ID	recorded.	Chicks	are	banded	before	fledging	to	allow	tracking	in	
the future. Data used here pertain to the cohort of birds at the Hoge-
Veluwe	site	that	matured	at	age	1	in	1980.

Although	great	tits	occasionally	live	to	8–9 years,	life	expectancy	
is	2 years	or	less.	In	this	cohort,	females	reproduced	only	at	ages	1–4,	
so for analysis of LRS we consider n = 4	groups	with	ages-at-death	
q = 1–4.	Raw	data	are	first	tabulated	into	a	matrix	with	one	row	per	
female:

(19c)�̂
2

∙q
= Σ̂bx

[

1 +
1

Q

(

s2
k∙,q

k∙q
− 1

)]

,

(20a)ŜSE∙ =
∑n

q=1
Dq�̂

2

∙q
.

E
(

SSB∙scaled
)

=
n − 1

n

∑n

q=1
Dq ∗ �̂

2

k∙,q
+
∑n

q=1
Dq

((

∑q

x=1
b̂
)

−2
)2

,

(20b)ŜSB∙ = SSB∙scaled −
n − 1

n

∑n

q=1
Dq ∗ �̂

2

k∙,q
.

F I G U R E  3 Results	of	simulations	of	LRS	using	the	vital	rates	
shown in Table 2, with fecundity that increased with age and 
moderately overdispersed variance in reproductive success (all 
ϕx = 3).	The	y	axis	shows	the	sum	of	squares	for	the	three	variance	
components,	with	the	groups	defined	by	age-at-death.	On	the	x 
axis,	in	replicates	1–500	parental	weights	were	shuffled	each	year,	
so there were no persistent individual differences in reproductive 
success.	In	replicates	501–1000,	the	same	parental	weights	were	
retained across individual lifetimes, which introduced positive 
correlations in realized reproductive success across time; this had 
no effect on SSB• but sharply increased SSE• and hence SST•.
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ID Age1 Age2 Age3 Age4 LRS q

1 0 0 NA NA 0 2

2 1 1 0 NA 2 3

3 0 NA NA NA 0 1

5 1 NA NA NA 1 1

6 0 NA 2 3 5 4

Columns	 2–5	 show	 the	 number	 of	 age-1	 recruits	 produced	 by	
each	 female	at	each	age,	with	LRS	being	 the	 total.	A	 “0”	 indicates	
the bird was recorded attempting a nest that year but produced no 
recruits	that	were	recorded	in	subsequent	years;	“NA”	indicates	the	
bird	was	not	observed	that	year.	Age-at-death	(q)	was	taken	to	be	the	
oldest	age	with	reproductive	success	data.	In	this	matrix,	female	1	
died after age 2 without producing any recruits, female 2 produced 1 
recruit at ages 1 and 2 before producing a clutch (but no surviving re-
cruits)	at	age	3,	and	female	6	produced	a	clutch	but	no	recruits	at	age	
1, was not observed at age 2, and then produced 2 and 3 recruits, 
respectively,	at	ages	3	and	4,	so	its	LRS	is	5.

Females can be grouped by age-at-death to produce results 
shown in Table 4. The cohort includes ΣDq = 81	females,	with	D1 = 48	
dying	after	reproducing	at	age	1,	and	just	5	that	reproduced	at	age	4.	
Reconstructed adult census size, based only on data for this cohort, 
is ΣNx = 138	 females.	Columns	k∙q and s2

k∙,q
 are mean and unbiased 

sample variance in LRS for each age-at-death. The sample variance 
is slightly overdispersed for q = 1–3	(raw𝜙q =

s2
k∙,q

k∙q
> 1),	but	s2

k∙,4
≪ k∙4 ,	

indicating substantial underdispersion in the oldest age-at-death 
group.	This	group	includes	only	5	individuals	that,	by	luck	or	pluck,	
all	left	3–5	total	offspring.	The	81	members	of	the	cohort	produced	
a total of 61 lifetime offspring, so overall mean sample LRS for the 
cohort is k∙∙ =	61/81 = 0.753,	much	less	than	mean	LRS	expected	for	
a	stable	population	(2),	so	Q = 0.753/2 = 0.376.	Although	birds	that	
build nests within the study area are exhaustively sampled, repro-
duction	also	occurs	in	surrounding	woods,	so	subsequent	sampling	of	
dispersing recruits born within the study area is not comprehensive.

Rescaling the raw data produces estimates of parametric vital rates, 
based on the relationships that ̂bq =

k∙q

Q
 and ̂�2

k∙,q
= b̂q

[

1 +
1

Q

(

s2
k∙,q

k∙q
− 1

)]

 .	
Finally,	 estimates	 of	 parametric	 sums	 of	 squares	 are	 made	 as	

follows: ŜSE∙ =
∑n

q=1
ŜSE∙q =

∑n

q=1
Dq�̂

2

k∙,q
= 188.9 .	 If	 all	 ϕx were 1, 

E(SSE•random) = 162,	so	most	of	the	empirical	SSE•	can	be	explained	by	
random	reproduction.	For	the	between-group	sum	of	squares,	SSB•	
is 366.4, from which we subtract 

�

n− 1

n

�

∗
∑n

q=1
�2
k∙,q

= 0.75∗9.7 = 7.2 
to account for stochasticity, leaving ŜSB∙ = 359.1. To evaluate how 
much of this can be explained by random variation in longevity, re-
place all bx by b̂ = 2N1ΣqDq = 1.17. The result (ŜSB∙longevity = 103.2 )	
is	about	30%	of	total	ŜSB∙, with the remainder attributed to differ-
ences in fecundity with age. The estimate of the total parametric 
sum	of	squares	is	ŜST∙ = ŜSE∙ + ŜSB∙ = 548.0, of which a bit over a 
third	 (34.5%)	 is	 due	 to	within-group	 effects.	Most	 of	 the	 latter	 is	
attributable to random variation in reproductive success among 
same-age	individuals	(hence,	overdispersion	within	ages	is	modest).	
Effects of persistent individual differences in reproductive success 
would	appear	in	SSE•.	To	evaluate	this,	I	computed	an	index	(ρα,α+)	
proposed by Waples (2023),	which	is	the	correlation	across	individu-
als between the number of offspring produced at the age at maturity 
(α)	 and	 total	 offspring	 produced	during	 the	 rest	 of	 their	 lifetimes.	
Persistent individual differences in reproductive success are ex-
pected to produce positive values of ρα,α+, whereas negative values 
can be caused by skip breeding or tradeoffs between reproduction 
and survival. The correlation was not significant (ρα,α+ = −0.137,	
p = .22,	n = 81	for	a	two-tailed	test),	suggesting	that	effects,	 if	any,	
were relatively minor.

To evaluate uncertainty in the variance partitioning, annual data 
for	 the	81	females	 in	 the	cohort	were	bootstrapped	10,000	times	
and	 the	parametric	 sums	of	 squares	were	 re-estimated	 from	each	
replicate (Figure 5).	The	95%	bootstrapped	CI	for	ŜSE∙ extends well 
below the null expectation, so there is no overall evidence for with-
in-age overdispersion compared to random Poisson variance. The 
bootstrap	 CI	 for	 ŜSB∙	 is	wide	 but	 the	 lower	 bound	 (124)	 is	 larger	
than the null expectation that all between-age-at-death differences 
in	LRS	can	be	attributed	entirely	to	variation	in	longevity—which	is	
consistent with reports of some modest changes in fecundity with 
age in this species (Bouwhuis et al., 2012).	 The	median	bootstrap	
ratio ŜSB∙∕ ŜST∙ = 0.68 agreed well with the conclusion from the 
original data that about two thirds of the total lifetime variance was 

TA B L E  4 ANOVA	analysis	of	lifetime	reproductive	success	in	the	cohort	of	female	great	tits	that	matured	at	age	1	in	1980	in	the	Hoge-
Veluwe site in the Netherlands.

x,q Dq Nx

Raw LRS data Scaled data Sums of squares

k∙q s2
k∙,q

ϕq �b̂x �̂
2

∙q
ϕq SSE• SSE•random SSB• SSB•long

1 48 81 0.46 0.51 1.11 1.22 1.58 1.30 75.7 56.3 29.5 32.8

2 14 33 0.50 0.58 1.15 1.33 1.87 1.41 26.2 32.9 6.3 1.7

3 14 19 0.93 1.46 1.57 2.47 6.21 2.52 87.0 49.3 3.1 32.4

4 5 5 3.80 1.20 0.32 10.09 0.00 0.00 0.0 23.5 327.5 36.3

81 138 9.7 188.9 162.0 366.4 103.2

Note: The “Dq”	column	shows	the	distribution	of	ages-at-death	for	the	81	members	of	the	cohort.	Columns	under	“Raw	LRS	data”	show	estimates	of	
LRS metrics based on field samples of age-1 recruits. Columns under “Scaled data” show variables that have been rescaled based on the estimated 
index of sampling intensity Q = 0.376.	For	q = 4,	rescaling	the	raw	s2

k∙,q
 produced a negative result, so �̂2

∙4
	was	recorded	as	0.	The	“Sums	of	squares”	

columns	show	within-age-at-death	(SSE•)	and	between-age-at-death	(SSB•)	components.	See	Table 1 for notation, and text for explanation of the 
calculations.
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due to SSB ∙,	but	the	empirical	95%	CI	was	wide	(0.34–0.87),	so	the	
exact partitioning is uncertain. Much of this uncertainty can be at-
tributed	 to	 the	small	number	 (5)	of	birds	 that	 lived	 to	age	4,	all	of	
which had high LRS; how many of those birds were selected in each 
bootstrap replicate therefore had a large effect on results.

With overlapping generations, Ne is proportional to generation 
length (Equation 5),	 so	 parsing	 factors	 contributing	 to	 the	 Ne/N 
ratio is more complicated than it is for annual Nb/N.	 If	all	N1 mem-
bers of the cohort had random variation in LRS, then E(�2

k ∙
) = mean	

(LRS) = 2,	in	which	case	Equation 5 would simplify to Ne = N1T, which 
is the number of newborns entering the population in a generation 
(Hill, 1972).	Accordingly,	we	focus	on	factors	that	elevate	�2

k ∙
 com-

pared to the null expectation. The constant-N scaled estimate of 
the variance of LRS is �̂2

k ∙
= 6.13, about 3 times as large as the null 

expectation. The 3 relevant factors are overdispersed variance in re-
productive success among same-age individuals, systematic changes 
in	fecundity	with	age,	and	variation	in	longevity.	Of	these,	changes	in	
fecundity with age are by far the most important (~3 times the lon-
gevity	effect),	and	within-age	effects	are	only	of	minor	importance.

The	 Opportunity	 for	 Selection	 metric	 for	 LRS,	 adjusted	
to account for random contributions, is designed to be calcu-
lated from raw data (Waples & Reed, 2023).	 The	 sample	 mean	
LRS	 is	0.753	and	 the	sample	variance	 is	1.34,	 so	 the	 raw	OFS	 is	
I ∙ =

s2
k ∙

k∙∙
2 =

1.34

0.567
= 2.36 .	 From	 this	 we	 subtract	 expected	 contri-

butions from sampling offspring (which is the inverse of mean 
LRS)	 and	 a	 term	 to	 account	 for	 random	 variation	 in	 longevity,	
which is independent of sampling effort. This latter term (from 
Equations 10a and 10b in Waples & Reed, 2023)	is:

where q =
∑n

q=1
qDq ∕

∑n

q=1
Dq is the mean age at death. For the great 

tit data, q = 1.70 and E
(

I∙longevity
)

= 0.32.	The	net	OFS	metric	that	rep-
resents greater-than-random variance in LRS is

E
�

I∙longevity
�

=

∑n

q=1
Dq ∗ (q−q)2

q2
∑n

q=1
Dq

,

ΔI∙ = 2.36 −
1

0.753
− 0.32 = 0.713.

F I G U R E  4 Graphical	depiction	of	the	partitioning	of	
components of variation in offspring number for annual 
reproduction in black bears (based on data in Table 3 and Table S1)	
and lifetime reproduction in great tits (based on data in Table 4).	In	
the	ANOVA	panels,	the	area	of	each	pie	is	overall	SST	for	rescaled	
data, and colored segments depict the relative contributions 
of	random	and	greater-than-random	within-age	(SSE)	and	
between-age	(SSB)	components;	for	LRS	in	great	tits,	the	relative	
contribution from random variation in longevity is also shown. The 
area of each annual effective size pie for black bears represents 
unity; the black sector represents the Nb/N ratio, and the blue 
and red sectors show reductions in Nb/N that are attributable to 
within-age and between-age effects, respectively. The lifetime 
effective size pie for great tits shows the relative contributions of 
within-age, between-age, and longevity effects on variance in LRS. 
The	Opportunity	for	Selection	panels	show	the	magnitude	of	OFS	
that exceeds that expected under a null model of random variation 
in reproductive success. The area of each pie is proportional to ΔI 
(or ΔI∙	for	LRS	in	the	great	tit),	and	the	relative	sizes	of	the	within-
age and between-age effects are shown by the colored segments. 
Numbers next to colors in the legend correspond to numbered 
segments in the pie charts.

F I G U R E  5 Results	from	bootstrapping	raw	data	for	lifetime	
reproduction in great tits. Black bars are point estimates discussed 
in	the	text;	rectangles	are	empirical	95%	confidence	intervals	
across 10,000 bootstrap replicates. Left axis shows unbiased 
estimates	of	sums	of	squares;	right	axis	shows	SSB•	as	a	fraction	
of	the	total	sum	of	squares	SST•.	Dotted	lines	show	the	expected	
random contribution to SSE• from Poisson variance in reproductive 
success within ages and the expected contribution to SSB• from 
random variation in longevity.

 20457758, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10647, W

iley O
nline L

ibrary on [05/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  15 of 17WAPLES

As	with	reductions	to	effective	size,	almost	all	of	this	ΔI∙ can be 
attributed to between-age effects.

4  |  DISCUSSION

Important	points	that	emerge	from	results	presented	above	can	be	
summarized as follows:

•	 The	 ANOVA	 sums	 of	 squares	 formulas	 in	 Equations	1a–1c and 
Equations	 2a–2c	 do	 not	 require	 any	 assumptions	 about	 demo-
graphic or population dynamic processes and can be used with 
any empirical datasets that include numbers of offspring pro-
duced by each potential parent in each time period.

• Robust estimates of parametric within- and between-group sums 
of	squares	also	provide	robust	estimates	of	the	proportions	of	the	
total variance in offspring number arising from these two sources 
of variation.

• For a given age structure (relative age-group sizes determined 
by the cumulative survivorship vector lx),	variance	partitioning	is	
independent of N, which means that randomly subsampling po-
tential parents produces unbiased estimates of the variance par-
titioning (Figure S5).	However,	because	the	mean	and	variance	of	
offspring number are positively correlated, variance partitioning 
is	NOT	independent	of	the	fraction	of	offspring	sampled.	Under	
generalized sampling, empirical means and variances can be res-
caled using an index of sampling intensity (Q)	to	allow	meaningful	
comparisons across studies. Q can be estimated directly from the 
raw data.

•	 Estimators	of	parametric	sums	of	squares	developed	here	are	as-
ymptotically unbiased, with modest biases to ŜSB and ŜSB∙ when 
some group sizes are <10 and/or sampling is very sparse.

Without in any way suggesting that the topic considered here 
is	 as	 consequential	 as	 the	 one	 Lewontin	 tackled	 in	 his	 landmark	
1972	 paper,	 some	 important	 parallels	 can	 be	 identified	 between	
his apportionment of human genetic diversity and partitioning of 
variance	 in	 offspring	 number.	 A	major	 point	 of	 Lewontin's	 paper	
was that the genetic differences most people were focusing on (be-
tween	races,	or	geographic	populations	within	races)	are	dwarfed	
by the ‘other’ ~85%	 of	molecular	 genetic	 variation	 that	 is	 found	
among individuals within those groups. The situation is similar for 
partitioning variance in offspring number, where the within-age 
sum	of	squares	for	annual	reproduction	(SSE)	generally	dominates	
the overall variance, even when fecundity changes sharply with age 
and variance within ages is Poisson (Figure S1).	 Published	 litera-
ture, however, consistently focuses primarily on the between-age 
component (indexed by bx	values	from	a	 life	table)	and	largely	 ig-
nores the within-age component. That is akin to ignoring all but the 
small red sectors in the black bear pie charts in Figure 4—that	is,	the	
‘other’	85+%	of	the	total	variation.	Notably,	SSE	is	also	≫SSB (and 
to	a	proportionally	greater	degree)	 for	 female	black	bears,	which	
is a bit surprising, given that in most species males are expected 

to have higher reproductive variance. SSE is lower in female black 
bears than in males, but SSB is as well (and to a proportionally 
greater	degree),	leading	to	the	net	result	that	the	within-age	com-
ponent is relatively more important in females.

The typical outcome of variance partitioning is somewhat differ-
ent for lifetime reproduction. Mortality inevitably creates disparities 
in individual longevity, which increase SSB• and tend to make the 
variance partitioning more even. Still, the within-age component 
(SSE•)	generally	is	fairly	substantial	and	can	dominate	if	within-age	
variance is overdispersed (ϕ > 1;	Figure 2).

The two worked examples illustrate some of the vagaries of deal-
ing	with	 empirical	 data	 for	 natural	 populations.	Although	 the	black	
bear data were collected during an intensive study that lasted most 
of a decade, this represents less than half of the maximum lifespan 
for the species, so analysis of LRS was not feasible. The 221 par-
ent-offspring matches also represented a small fraction of the es-
timated numbers of potential parents that might have produced 
matches, so effective sampling effort was very sparse (estimated at 
Q = 5%	for	males).	Nevertheless,	this	sparse	sampling	was	sufficient	to	
demonstrate that, in both sexes, within-age effects account for most 
of the overall variance in annual offspring number. Because the ex-
perimental	design	required	combining	estimates	for	reproduction	in	
different years, the estimated SSE component includes a year effect 
of unknown magnitude. With more extensive data, one could esti-
mate and account for this year effect (as done for example by Engen 
et al., 2005, 2010,	who	treated	it	as	a	random	environmental	effect).

Somewhat ironically, although breeding pairs of great tits are ex-
haustively sampled each year within the study area (as are eggs and 
fledglings	 they	produce),	 the	variance	partitioning	had	a	 relatively	
high degree of uncertainty. Two factors are primarily responsible for 
this result. First, surviving birds can return to breed in the surround-
ing	woods,	so	sampling	of	offspring	at	the	recruit	(age	1)	stage	is	not	
exhaustive (estimated here at Q = 37%	for	 the	cohort	 in	question).	
Second, the population is relatively small, in the sampled cohort only 
5	females	 lived	to	reproduce	at	age	4,	and	these	birds	all	had	high	
and nearly identical LRS. These five individuals were highly influ-
ential to the variance partitioning, as reflected in the wide range of 
bootstrapped results.

LRS data can be more complicated to interpret because of potential 
correlations between reproduction and survival that can affect SSE•. 
In	the	great	tit	example,	ŜSE∙ was only slightly higher than (and statis-
tically	consistent	with)	a	null	model	in	which	within-age	reproductive	
variance was Poisson and expected values of these correlations were 
0 (Figure 5).	Furthermore,	the	index	of	correlation	between	initial	and	
subsequent	reproductive	success	(ρα,α+)	was	not	significantly	different	
from	zero.	It	seems	likely,	therefore,	that	factors	such	as	persistent	in-
dividual differences and effects of reproduction on survival were not 
substantial, at least for this particular cohort.

The pie charts in Figure 4 are a convenient way to visually depict 
the	partitioning	of	variance	in	reproductive	success.	It	is	immediately	
apparent, for example, that whereas within-age effects dominate the 
overall variance in black bears, they are of relatively minor impor-
tance for great tits. Two of the most common practical applications 
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for these results are calculations of effective population size and 
the	Opportunity	for	Selection.	In	applied	conservation	and	manage-
ment, insights into factors that reduce the effective size: census size 
ratio can help direct efforts to raise that key ratio. For both male 
and female black bears, the most effective strategies would involve 
reducing disparities in reproductive success among individuals of the 
same age. For great tits, in contrast, individual variation in longevity 
and modest differences in fecundity with age are the primary factors 
that increase variance in LRS and reduce Ne.

Ideally,	Ne should be computed across a full life cycle; if not, the 
value	applies	to	only	part	of	a	generation.	One	option	is	to	compute	
variance in offspring number in terms of production of zygotes by 
zygotes (Hill, 1972),	as	doing	so	avoids	the	well-known	problem	of	
creating an index that reflects both fertility of parents and survival 
of their offspring (Thomson & Hadfield, 2017).	However,	 this	pre-
dictably leads to zero-inflation of �2

k ∙
 in proportion to the magnitude 

of mortality before first breeding (Waples & Reed, 2023).	 In	 the	
great tit example, �2

k ∙
 was estimated as production of age-1 recruits 

by adults, which covered a full life cycle because maturity occurs at 
age	1.	It	is	true	that	the	Opportunity	for	Selection	based	on	�2

k ∙
 com-

puted this way will include components for both parental fertility 
(I•f)	and	offspring	mortality	(I•m),	but	these	components	would	need	
to be studied separately in any detailed study of selection.

It	should	be	remembered	that	the	Opportunity	for	Selection	is	
just	 that—an	 opportunity—and	 is	 not	 a	 demonstration	 that	 selec-
tion has actually occurred (see recent review by Reed et al., 2023).	
Nevertheless,	the	relative	magnitude	of	OFS	can	help	researchers	
direct scarce resources toward experimental designs that are most 
likely to produce interesting results. The indices used here (ΔI for 
annual reproduction in black bears and ΔI∙	for	LRS	in	great	tits)	are	
independent	of	mean	fitness	and	reflect	the	component	of	OFS	that	
exceeds the random expectation under common null models. From 
Figure 4,	 it	 is	 apparent	 that	OFS	 is	 relatively	 large	 for	male	black	
bears, and that within-age effects would be the most productive 
factors	to	explore.	Inspection	of	Table 3 indicates that ages 6 and 
older	(with	high	variance-to-mean	ratios)	are	particularly	good	can-
didates for studies of natural selection. For this particular cohort 
of great tits, ΔI∙ is relatively small (Figure 4).	It	would	be	premature	
to conclude that selection is unimportant in this species, however, 
because this estimate applies to a single cohort of females, none 
of which survived beyond age 4. Furthermore, longitudinal studies 
of great tits demonstrate ample genetic variation for traits such as 
mean laying date, which can vary across years with different envi-
ronmental conditions (Visser et al., 2021).

Because	 the	equal-variances	ANOVA	assumption	will	often	be	
violated with empirical reproductive-success data, Fisher's F statistic 
is not recommended in significance testing of variance partitioning. 
Instead,	bootstrapping	can	be	used	with	the	raw	data,	as	in	the	LRS	
example for great tits. The worked example for annual reproduction 
in black bears used age-specific vital rates rather than raw data, be-
cause vital rates are widely available in standard life tables, but a 
similar bootstrap approach could be used to generate confidence in-
tervals when raw data are available. Variance partitioning for annual 

reproduction	 does	 require	 an	 age-specific	 vital	 rate	 (ϕx = �2
k,x

∕bx)	
that	 is	 not	widely	 reported.	 If	 estimates	 of	ϕx are not available, a 
range of plausible values could be explored.

Extrapolating	 from	annual	vital	 rates	 to	LRS	 requires	 some	as-
sumptions about temporal correlations in individual reproductive 
success over time, which might be feasible for some species. For ex-
ample,	consequences	of	skip	breeding	might	be	modeled	using	the	
parameter θi (Shaw & Levin, 2013),	which	gives	the	probability	that	
an individual will reproduce in the current year, given that it last re-
produced i years previously. Persistent individual differences can be 
modeled using TheWeighT algorithm (Waples, 2022),	which	could	be	
tuned to simulate a desired level of positive correlation in individual 
reproductive success over time.
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