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Abstract
Variance in reproductive success (s2

k
, with k = number of offspring) plays a large role 

in determining the rate of genetic drift and the scope within which selection acts. 
Various frameworks have been proposed to parse factors that contribute to s2

k
, but 

none has focused on age-specific values of ϕ = s2
k
∕k, which indicate the degree to 

which reproductive skew is overdispersed (compared to the random Poisson expec-
tation) among individuals of the same age and sex. Instead, within-age effects are 
generally lumped with residual variance and treated as “noise.” Here, an ANOVA sums-
of-squares framework is used to partition variance in annual and lifetime reproductive 
success into between-group and within-group components. For annual reproduction, 
the between-age effect depends on age-specific fecundity (bx), but relatively few em-
pirical data are available on the within-age effect, which depends on ϕx. By defining 
groups by age-at-death rather than age, the same ANOVA framework can be used 
to partition variance in lifetime reproductive success (LRS) into between-group and 
within-group components. Analytical methods are used to develop null-model expec-
tations for random contributions to within-group and between-group components. 
For analysis of LRS, random variation in longevity appears as part of the between-
group variance, and effects (if any) of skip breeding and persistent individual differ-
ences contribute to the within-group variance. Simulations are used to show that the 
methods for variance partitioning are asymptotically unbiased. Practical application is 
illustrated with empirical data for annual reproduction in American black bears and 
lifetime reproduction in Dutch great tits. Results show that overdispersed within-age 
variance (1) dominates annual s2

k
 in both male and female black bears, (2) is the primary 

factor that reduces annual effective size to a fraction of the number of adults, and (3) 
represents most of the opportunity for selection. In contrast, about a quarter of the 
variance in LRS in great tits can be attributed to random variation in longevity, and 
most of the rest is due to modest differences in fecundity with age estimated for a 
single cohort of females. R code is provided that reads generic input files for annual 
and lifetime reproductive success and allows users to conduct variance partitioning 
with their own data.
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1  |  INTRODUC TION

Variation among individuals is the stuff of evolution. Evolution by 
natural selection requires individual variation in heritable pheno-
typic traits affecting fitness. Over a century ago, RA Fisher  (1918) 
introduced the term “variance” (the square of the standard devia-
tion) as the preferred metric for measuring this variation, and im-
mediately efforts began to identify different factors contributing to 
an overall variance. Perhaps the most famous such example was by 
Lewontin  (1972), who estimated that only about 15% of the total 
molecular genetic variance in humans was due to differences be-
tween races or between populations within races, with the remain-
ing 85% found among individuals within populations. The amount of 
data Lewontin had available at the time was extremely limited by to-
day's standards, but his qualitative conclusions have proved surpris-
ingly robust and influential across a half-century (Novembre, 2022).

Another kind of variance—in reproductive success, measured as 
the number of offspring, k, contributed to the next generation—is 
also crucially important to evolution. The ratio of variance-to-
mean offspring number 

(

ϕ = �2
k
∕k

)

 has been termed the “Index of 
Variability” (Crow & Morton, 1955), and this index is the primary 
factor that determines to what extent (if any) the effective pop-
ulation size (Ne) is less than the census size (N) (Caballero,  1994; 
Crow & Denniston, 1988). A related index defined by Crow (1958); 
I = �2

k
∕k

2
= the variance in relative fitness) has come to be known 

as the opportunity for selection because its sets an upper limit to 
the rate of evolutionary adaptation. Variance in offspring number 
appears in the numerator of both of these indices and consequently 
has as large role in determining both the rate of genetic drift and the 
scope within which selection can act.

The major goal of this paper is to develop an approach analogous 
to Lewontin's, but instead of apportioning genetic data based on race 
or geography, we will be concerned with partitioning the overall vari-
ance in reproductive success into within-age and between-age com-
ponents. Emphasis is on the large fraction of the world's species that 
are age structured and iteroparous, with overlapping generations 
and strongly seasonal (birth-pulse) reproduction (Caswell, 2001). For 
these species, it is important to consider two different frameworks 
for measuring reproductive success: within seasons or time periods 
(hereafter assumed to be years), and over lifetimes (quantified as life-
time reproductive success, or LRS; aka lifetime reproductive output, 
van Daalen & Caswell, 2017). For annual reproduction, two system-
atic components contribute to the overall variance in offspring num-
ber: a between-age effect and a within-age effect. The between-age 
effect depends on how expected reproductive success varies with 
age, as reflected in age-specific expected fecundity values (bx) from 

a life table. The within-age effect depends on age-specific values 
of ϕx, which unfortunately are rarely reported in the literature. As a 
consequence, how ϕx varies across species and between ages within 
species is largely unknown.

For lifetime reproduction, the relevant metric is variance in 
LRS, �2

k∙
 (Brown, 1988; Hill, 1972; Tuljapurkar et al., 2020). Lifetime 

�2
k∙

 is affected by age-specific variation in bx and ϕx, as well as an-
other factor: longevity. All else being equal, individuals that live 
longer have more opportunities to reproduce, which increases 
disparity in lifetime offspring number between individuals and in-
creases �2

k∙
 . Caswell (2001) and van Daalen and Caswell (2017) use 

the term “Markov chains with rewards” to describe the random as-
pects of this process of accumulating LRS, and variation in longev-
ity can be the dominant factor contributing to variance in LRS (e.g., 
Newton, 1989).

The number of components of reproductive success that po-
tentially could be identified is essentially unlimited, and a wide 
variety of frameworks for doing this have been proposed over the 
years (Arnold & Wade, 1984; Broekman et al., 2020; Brown, 1988; 
Ferguson & Fairbairn,  2001; van Noordwijk & van Balen,  1988). 
Some researchers have paid attention to within-age contributions 
to reproductive variance, but if so it has generally been to identify 
ages for which this variance is relatively large (e.g., the Siberian jay 
example in Engen et al., 2010; the moose example considered by Lee 
et al., 2020; and the sagebrush case study by Snyder et al., 2021). In 
linear modeling, the within-age component typically is incorporated 
into the residual or error variance and treated as noise.

All of these approaches can provide useful insights, depend-
ing on one's objectives and the kinds of data that are available, 
but none has focused on quantifying the overall contribution 
from variance in offspring number among individuals of the same 
age and sex. This is an important data gap; the residual variance 
often dominates the overall variance and, as shown in the black 
bear example below, the degree to which reproductive variance is 
overdispersed can vary by age and sex. Important insights into the 
potential for selection to act and the factors responsible for reduc-
ing Ne compared to N can be missed when the within-age variances 
are largely ignored.

In what follows, I first describe a simple one-way ANOVA 
framework within which researchers can partition variance in an-
nual reproductive success into within-age and between-age effects 
and can partition variance in LRS into within-age, between-age, 
and longevity effects. Analytical methods are also developed that 
allow researchers to calculate what fraction of these variance 
components can be attributed to random (Poisson) stochasticity in 
reproduction and survival. Modern molecular tools and improved 

K E Y W O R D S
computer simulations, effective population size, opportunity for selection, population 
genetics, reproductive skew, variance components
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methods for parentage analysis make it easier than ever to collect 
empirical data on variance in offspring number. Analysis of annual 
data is important because any long-term study begins with data 
collected for individual years, and many empirical studies never 
encompass entire lifespans for the focal species (Nishida, 1989). 
Furthermore, the distribution of annual reproductive success pro-
vides key insights into mating systems, and the most direct way to 
study sexual selection is by collecting data on all mature individu-
als that co-occur at the same time and place. That is not the case 
when analyzing only LRS data. Understanding the relative magni-
tude of between-age and within-age effects should lead to richer 
insights into mating systems and reproductive biology, as well as 
an increased ability to predict evolutionary responses to environ-
mental changes that can affect fitness.

2  |  METHODS

See Table 1 for notation and definitions of terms.

2.1  |  Demographic model

The focal population is isolated and iteroparous, with separate 
sexes. Analogous methods apply to both males and females; 
for simplicity data are considered for a single sex, nominally fe-
male. Reproduction follows the discrete-time, birth-pulse model 
(Caswell, 2001), with age indexed by x. At age x, each individual 
produces on average bx offspring and survives to age x + 1 with 
probability vx. Age at maturity (first age with bx > 0) occurs at age 
α and maximum age is ω. Newborns (age 0) do not reproduce, 
so bx is scaled to production of offspring that survive to age 1, 
when they can be enumerated. Cumulative survival through age 
x is lx =

∏x

i=2
vi−1, with l1 = 1. In a constant population with each 

birth cohort consisting of N1 yearlings, the expected number of 
individuals of age x alive at any given time is E(Nx) = N1lx, and ex-
pected total census size is E(NT) = ∑E(Nx) = N1Σ lx. Because we are 
concerned with reproductive success, focus is on the adult popu-
lation size, NA =

∑�
x=�

Nx.
Standard life tables provide values for age-specific survival and 

fecundity, to which we add a third age-specific vital rate, �2
k,x

, which 
is the variance in offspring number (k) around the mean for individ-
uals of age x (bx). In many cases, it is convenient to deal with the 
parameter ϕx = �2

k,x
∕bx, which is the age-specific ratio of variance to 

mean offspring number.

2.2  |  Variance partitioning

Two major goals of this paper are to (1) quantify the relative impor-
tance of within-age and between-age effects to the overall vari-
ance in reproductive success and (2) show how these differences 
depend on, and can be predicted from, age-specific vital rates. 

TA B L E  1 Notation.

x Age (in years)

α Age at maturity

ω Maximum age

q Age at death

n Number of adult age classes = number of groups in 
ANOVA

vx Probability of surviving from age x to age x + 1

lx Cumulative probability of surviving to age x, with 
l1 = 1

N1 Cohort size = number of offspring of one sex 
produced per time period that survive to age 1

Nx Number of individuals of age x alive at any given 
time; Nx = N1lx

Dq Number of individuals that died after reaching age q; 
Dq = Nq–Nq + 1

NT Total number of individuals of all ages alive at any 
given time; NT = ΣNx

NA Number of adults with age ≥ α alive at any given time

Q An index of sampling intensity relative to sampling all 
offspring in a stable population

bx Expected number of offspring in one time period for 
parents of age x

ki,x Actual number of offspring produced in one time 
period by parent i of age x

kx Actual mean k for parents of age x

k∙ Actual mean k for all parents

b Parametric mean offspring number for all parents in 
one time period

b̂x An estimate of bx obtained by rescaling kx by 
sampling intensity; b̂x = kx ∕Q

�2
k

Parametric variance of k for all parents

�2
kx

Parametric variance of k for adults of age x

ϕx Ratio of parametric variance to mean reproductive 
success in one time period for adults of age x; ϕx 
= �2

kx
/bx

s2
kx

Unbiased sample variance of k for adults of age x

�̂
2

kx
An estimate of �2

kx
 obtained be rescaling s2

kx
 according 

to Equations 7a and 7b

k∙i,q Total lifetime number of offspring produced by 
individual i that died at age q

k∙q Mean k∙i,q for all individuals that died at age q

s2
kx

Unbiased sample variance of k∙i,q for all individuals 
that died at age q

k∙∙ Mean k∙i for all individuals

�2
k∙

Parametric variance in k∙i among all N1 individuals in 
a cohort

SSB (SSB•) Between-age sum of squares for annual (lifetime) 
reproduction

SSE (SSE•) Error or within-age sum of squares for annual 
(lifetime) reproduction

(Continues)
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This is done using a one-way ANOVA sums-of-squares framework, 
which partitions sources of variation into three components (SST, 
total sum of squares of deviations; SSB, between-group sum of 
squares; and SSE, error or within-group sums of squares). The 
sums of squares are additive, such that SST = SSB + SSE, and the 
groups are the ages in an adult lifespan. In Model II (random ef-
fects) ANOVA, this partitioning commonly is done in a “variance 
components” analysis, which directly estimates the within- and 
between-group variances that are associated with SSB and SSE. 
That approach is not used here, for two major reasons. First, var-
iance-component estimation is done in a random-effects frame-
work, whereas age is best treated as a fixed effect (Whitlock & 
Schluter, 2014). Second, although variance components analysis is 
fairly straightforward in a balanced ANOVA, group sizes in a sta-
ble population (Nx = numbers of adults in each age class) generally 
decline with age. Various methods have been proposed to deal 
with variance component estimation in unbalanced ANOVA de-
signs, but all have disadvantages and no consensus has emerged 
regarding the optimal approach (reviewed by Searle (1995).

Instead, the approach used here derives from the fact that the 
overall parametric variance in offspring number is �2

k
= SST∕NA, 

so the parametric variance partitioning becomes �2
k,Within

 = SSE/NA 
and �2

k,Between
 = SSB/NA, such that �2

k,Within
+ �2

k,Between
= �2

k
. It follows 

that if parametric SSE and SSB can be estimated as a function of 
the population's vital rates and the experimental design (including 
sampling intensity), it provides a means for estimating the para-
metric variance components. Below, this framework is used for 
analysis of annual and lifetime reproductive success. For simplicity 
in what follows it is assumed that α = 1, but only minor changes 
to notation are required if age at maturity is >1. If α is probabilis-
tic rather than fixed, age-specific vital rates should reflect over-
all means and variances across mature and immature individuals 
(Waples & Reed, 2023).

2.2.1  |  Annual reproduction

Using the notation described above, the sums-of-squares compo-
nents for annual reproduction are

where n is the number of adult age classes, ki,x is the number of 
offspring produced by parent i of age x, Nx is the group size for 
age class x, and kx and k∙ are group and overall mean offspring 
numbers, respectively.

2.2.2  |  Lifetime reproductive success

In the lifetime reproductive success (LRS) version of the ANOVA 
framework, individuals are grouped by age-at-death (q) rather than 
age, and the symbol • is used to designate lifetime variables. For 
LRS, the sums of squares become

where Dq is the number of individuals that died after reproducing at 
age q but before reaching age q + 1, k•i,q is the total lifetime number of 
offspring produced by individual i that died at age q, k∙q is the mean LRS 
for individuals that die at age q, and k∙∙ is mean LRS across all N1 indi-
viduals in a cohort. As with annual reproduction, SST• = SSB• + SSE•.

2.3  |  Effective population size

Mean and variance in offspring number are the major factors that 
determine effective size. For seasonal reproduction in an age-struc-
tured species, the most relevant effective-size metric is the effec-
tive number of breeders per year (Nb) because it relates directly to 
the annual number of adults (NA). For each sex, Nb can be calculated 
using the standard discrete-generation formula for inbreeding effec-
tive size (Caballero, 1994; Crow & Denniston, 1988):

Nb can be calculated separately for males and females and an 
overall Nb obtained using Wright's  (1938) sex-ratio adjustment. 
The expected annual variance in offspring number can be calcu-
lated from age-specific vital rates using the definition of a variance: 
�2
k
= E

(

k2
)

−
[

E(k)
]2
. Substituting for E(k) = k and E

(

k2
)

= Σk2
i
∕N 

and rearranging produces an expression for the sum of squared 
numbers of offspring:

(1a)SSE =

n
∑

x=1

∑Nx

i=1

(

ki,x−kx
)2

(1b)SSB =
∑n

x=1
Nx

(

kx−k∙
)2

(1c)SST =

Nx
∑

i=1

∑n

x=1

(

ki,x−k∙
)2

(2a)Within age − at − death: SSE ∙ =

n
∑

q=1

∑Dq

i=1

(

k∙i,q−k∙q
)2
,

(2b)Between age − at − death: SSB ∙ =
∑n

q=1
Dq

(

k∙q−k∙∙
)2
,

(2c)Across all individuals: SST ∙ =

n
∑

q=1

∑Dq

i=1

(

k∙i,q−k∙∙
)2
,

(3)Nb =
k∙NA − 1

k∙ − 1 +
�2
k

k∙

.

(4)Σk2
i
= N

(

�2
k
+ k

2
)

.

x Age (in years)

SST (SST•) Total sum of squares for annual (lifetime) 
reproduction

ρα,α+ Correlation across individuals between the number 
of offspring produced at the age at maturity (α) 
and the total offspring produced during the rest 
of their lifetimes.

TA B L E  1 (Continued)
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    |  5 of 17WAPLES

Equation 4 can applied sequentially to each age and the overall 
total then used to calculate the overall variance. The black bear ex-
ample below illustrates these calculations and shows how to sepa-
rate the within-age and between-age contributions to reduction of 
the key ratio Nb/NA.

Nb relates directly to all adults breeding in a single year, but most 
evolutionary theory depends on effective size per generation (Ne). 
Calculating Ne in iteroparous species is complicated by the necessity 
of integrating information across multiple episodes of reproduction. 
Hill (1972) provided the most general solution:

where T is generation length and �2
k ∙

 is calculated across the N1 indi-
viduals in a cohort.

2.4  |  Opportunity for selection

Application of Crow's I has been controversial, in part because it 
is a function of mean offspring number and hence depends on ex-
perimental design and sampling intensity as well as population pa-
rameters. The ΔI metric suggested by Waples  (2020) removes the 
dependency on mean fitness by subtracting the expected contri-
bution to I arising from random (Poisson) variance in reproductive 
success:

This metric is suitable for use with discrete generations, or for 
analysis of annual reproductive success in age-structured species.

For lifetime reproductive success, the inverse of mean LRS ac-
counts for random reproductive success within years and ages. In 
addition, there is a contribution to lifetime I• from random variation 
in longevity, so the ΔI metric relevant to LRS is (Waples & Reed, 2023)

with calculation of C as described below.

2.5  |  Sampling designs

For both annual and lifetime reproduction, two sampling designs 
were considered. In Case 1 (comprehensive sampling), all offspring 
from a stable population are sampled and assigned to parents. This 
is the most straightforward design to evaluate because results for 
empirical data can be related directly to analytical expectation based 
on parametric vital rates. For annual reproduction in a species with 
an even primary sex ratio, a stable population of NA adults produces 
2N1 offspring each year (N1 of each sex), so under comprehensive 
sampling the overall mean offspring number is k∙ = 2N1 ∕NA. For life-
time reproduction, a stable population occurs when the N1 individu-
als in a single-sex cohort each produce an average of two offspring 

over their lifetime, which again means that a total of 2N1 offspring 
are sampled under Case 1. The difference is that for annual repro-
duction, the offspring are assigned to NA =

∑n

x=1
Nx potential parents 

while the number of potential parents in each LRS cohort is only N1, 
so mean offspring number per parent for annual reproduction is a 
fraction of what it is for LRS.

Case 2 (generalized sampling) includes Case 1 as a special case 
but allows for a variety of different experimental designs and a 
range of sampling intensities. Often only a subset of offspring are 
sampled, leading to NOffspring < 2N1. Conversely, if young juveniles 
are sampled in a highly fecund species, NOffspring can be >>2N1. 
Divergence of NOffspring from the stable-population expectation 
leads to variation in realized mean offspring number. The ratio 
Q = NOffspring/(2N1) is a useful index of sampling intensity, with Q = 1 
replicating Case 1 (comprehensive sampling). It follows that for an-
nual reproduction E(kx) = Qbx. Variation in sampling intensity adds 
complexity to analysis of empirical data because, except in the spe-
cial case of a Poisson distribution, the variance in offspring num-
ber is positively correlated with the mean (Crow & Morton, 1955; 
Waples, 2002, 2020). This in turn complicates comparisons across 
populations and years, and even between males and females when 
the sex ratio is uneven.

If Q ≠ 1, it is desirable to standardize the analyses by estimating 
the expected variance in offspring number when the mean is the 
value that will produce a stable population (as suggested by Crow 
& Morton, 1955 and many others). Using our notation for annual 
reproduction, the rescaling can be done using an age-specific ver-
sion of the method of Crow and Morton  (1955), as modified by 
Waples (2002):

The unbiased sample variance for age x in the raw data is 
s2
kx
=
∑Nx

i=1

�

ki,x−kx
�2

∕
�

Nx − 1
�

, and �̂2
kx

 is a rescaled version that rep-
resents what the variance would be expected to be if sampling had 
been at the level that would produce mean offspring number = bx , 
instead of the actual raw mean = kx. Hence, �̂2

kx
 is an estimate of 

the parametric age-specific variance in offspring number, obtained 
by rescaling the raw data. Since E

(

bx

kx

)

= 1∕Q and s2
kx
∕kx = ϕx,raw, 

Equation 7a can be written as

Crow and Morton  (1955) derived their equation for Q > 1, in 
which case Equations 7a and 7b provides the expected variance if 
offspring had been randomly subsampled until mean offspring num-
ber reached the target level (bx). Waples  (2002) showed that the 
same formula applies when Q < 1, in which case �̂2

kx
 is the expected 

result if the same offspring distribution had been sampled more 
intensively.

This rescaling is done separately for each age or age-at-death, but 
using a common Q based on the total number of offspring sampled. 

(5)Ne ≈
4N1T

�2
k ∙

+ 2
,

(6)ΔI = I − 1∕k∙

ΔI∙ = I ∙ −
1

k∙∙
− C,

(7a)s2
kx,scaled

= �̂
2

kx
= bx

[

1 +
bx

kx

(

s2
kx

kx
− 1

)]

.

(7b)s2
kx,scaled

= �̂
2

kx
= bx

[

1 +
1

Q

(

ϕx,raw − 1
)

]

.
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6 of 17  |     WAPLES

For analysis of LRS, the above equation is valid after replacing x with 
q for age-at-death, and replacing the annual metrics with their re-
spective lifetime analogues.

The following assumptions are made regarding the estimation 
process:

•	 Means and variances in offspring number are calculated with re-
spect to the total number of adults alive at a given time. Including 
juveniles, which by definition cannot produce offspring, has 
predictable consequences related to zero-inflation (Waples & 
Reed, 2023) but is not considered here.

•	 The researcher has known or estimated ages for all potential 
parents in the population, so the vector Nx is known or can be 
estimated.

•	 Empirical data provide sample estimates of relative fecundity at 
age (kx) and age-specific variance in offspring number (s2kx), condi-
tional on kx.

•	 From the vector of relative kx estimates, the researcher can esti-
mate the bx values required to produce a stable population, using 
the expectation that Σlxbx = 2. The vector lx can be estimated from 
observed Nx values, or from independent data.

•	 The empirical estimate of Q to be used in rescaling the raw data is 
calculated as Q = Σlxkx/2.

2.6  |  Simulations

Computer simulations were run to confirm the accuracy of analytical 
results and to evaluate performance of the estimators. Main features 

of the simulations are summarized here; more details and computer 
code can be found in Supporting Information. All simulations were 
done in R (R Core Team, 2021) and modeled hypothetical popula-
tions with vital rates shown in Table 2. For both annual and lifetime 
reproduction, simulations were conducted for Case 1 and Case 2 
sampling. In Case 1, the comprehensive sampling effort was fixed 
at NOffspring = 2N1 (Q = 1), and N1 was varied across a 40-fold range 
[50–2000] to evaluate effects of population size (and hence group 
size in the ANOVA analyses). For Case 2, N1 was set to either 100 or 
500, and sampling effort was varied across an order-of-magnitude 
range (Q = [0.2,0.4,1,2]).

3  |  RESULTS

3.1  |  Annual reproduction

3.1.1  |  Parametric variance partitioning

To evaluate performance, it is necessary to establish what the true 
sums of squares are, which here are taken to be expected values in 
a stable population with demographics governed by parametric vital 
rates. These population parameters apply to a scenario in which all 
2N1 offspring in a cohort have been sampled and assigned to parents, 
in which case E(kx) = bx and E(�2

k,x
) = ϕxbx for all ages, and E

(

k∙
)

= b, 
where b = 2N1 ∕NA is the parametric mean offspring number across 
adults of all ages. The parametric sums of squares expectations 
are obtained by substituting these terms into Equations 1a–1c (see 
Appendix S1 for details):

TA B L E  2 Top: Vital rates for a hypothetical population having 5 age classes, constant survival (vx) at 50%/year, maturity at age 1, fecundity 
(bx) that is either constant, increases, or decreases with age, and variance in offspring number among individuals of the same age that is either 
random (ϕ = 1) or substantially overdispersed (ϕ = 10). bx values have been scaled to values that will produce a stable population. Computer 
simulations used different combinations of these vital rates. Bottom: The range of population sizes modeled in the simulations. The vector 
of age-specific Nx values (which are also the age-class group sizes in the ANOVA analyses for annual reproduction) are determined by the 
relationship Nx = lxN1, where lx is cumulative survivorship through age x. In parentheses after the Nx values are the numbers of individuals (Dq) 
that die after reaching age q but before reaching age q + 1. The Dq values are the group sizes in the ANOVA analyses of lifetime reproductive 
success. In this example, age at maturity is 1, so age (x) and age at death of adults (q) have the same range (1–5).

Age (x) vx

Fecundity (bx) ϕ

Constant Increasing Decreasing Random Overdispersed

1 0.5 1.03 0.56 1.24 1 10

2 0.5 1.03 1.12 0.99 1 10

3 0.5 1.03 1.69 0.74 1 10

4 0.5 1.03 2.25 0.50 1 10

5 0 1.03 2.81 0.25 1 10

x or q vx lx Nx (Dq)

1 0.5 1 50 (25) 100 (50) 250 (125) 500 (250) 1000 (500) 2000 (1000)

2 0.5 0.5 25 (12) 50 (25) 125 (62) 250 (125) 500 (250) 1000 (500)

3 0.5 0.25 13 (7) 25 (12) 63 (32) 125 (62) 250 (125) 500 (250)

4 0.5 0.125 6 (3) 13 (7) 31 (15) 63 (32) 125 (62) 250 (125)

5 0 0.0625 3 (3) 6 (6) 16 (16) 31 (31) 63 (63) 125 (125)
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    |  7 of 17WAPLES

The group-size vector is Nx = N1lx, so Equations  8a 
and 8b can be written as SSEparametric = N1

∑n

x=1
lx�

2
k,x

 and 
SSBparametric = N1

∑n

x=1
lx
�

bx−b
�2. Therefore,

which means that the ratios SSEparametric ∕SSTparametric and 
SSBparametric ∕SSTparametric are independent of population size, provided 
that vital rates do not change with abundance.

3.1.2  |  A null model

A variety of null models might be constructed for reproductive suc-
cess (see Waples & Reed, 2023 for details), but a simple one in wide-
spread use assumes that all potential parents function as a single 
Wright-Fisher population, with random mating and equal expecta-
tions of reproductive success, E(k). Under those conditions, for all 
ages bx = E(k) = b and ϕx = 1, which leads to

As illustrated below, this null model can provide a useful refer-
ence point for analysis of empirical data.

3.1.3  |  Estimation

For empirical data, Equations 8a and 8b are modified as follows (see 
Appendix S1 for details):

The first term in Equation  10b accounts for random contribu-
tions to kx, and (n–1)/n reflects the fact that the sample kx values are 
constrained to have an overall weighted mean of k∙, so the number 
of degrees of freedom is one less than the number of groups (as it is 
for the between-groups sum of squares in ANOVA).

Although group sizes are fixed constants, expectations for s2
kx

 and 
(

kx − k∙
)

 depend on the sampling regime, as discussed below.

Case 1: Comprehensive sampling
With comprehensive sampling, variance rescaling is not necessary, 
so E

(

s2
kx

)

= ϕxbx and E
(

kx − k∙
)

= E
(

kx) − E(k∙
)

=
(

bx − b
)

, and

The unbiased estimator of the within-age variance �2
k,x

 is calcu-
lated from the raw data as

An estimator of the overall with-age sum of squares is then

To estimate parametric SSB from empirical data it is necessary 
to subtract the expected value of the random component, leading to

where �̂2
Within

=
∑n

x=1
�̂
2

k,x
.

Case 2: Generalized sampling designs
For generalized sampling, expectations for the raw, empirical sums 
of squares as a function of Q and parametric vital rates are provided 
in Appendix S1. The next step is to develop unbiased estimators of 
the parametric variance components. Estimators used in this step 
are:

and �̂2
kx
= s2

kx,scaled
 is computed as in Equation  12. These estimators 

are then used in Equation 13 to get the overall within-group sum of 
squares estimator for generalized sampling:

For SSB, it is simplest to rescale the vital rates before accounting 
for random differences in age-specific fecundity (see Appendix S1 
for details). The unbiased estimator of SSB is

(8a)SSEparametric =

n
∑

x=1

Nx�
2
k,x

=

n
∑

x=1

Nxϕxbx

(8b)SSBparametric =
∑n

x=1
Nx

(

bx−b
)2
.

SSEparametric

SSTparametric

=
N1

∑n

x=1
lx�

2
k,x

N1

�

∑n

x=1
lx�

2
k,x

+
∑n

x=1
lx
�

bx−b
�2
� =

∑n

x=1
lx�

2
k,x

∑n

x=1
lx�

2
k,x

+
∑n

x=1
lx
�

bx−b
�2

,

(9a)SSEparametric,null =

n
∑

x=1

NxE(k) = b

n
∑

x=1

Nx = bNA

(9b)SSBparametric,null =
∑n

x=1
Nx

[

E(k)−E(k)
]2

= 0.

(10a)E
(

SSEempirical

)

= E

[

n
∑

x=1

∑Nx

i=1

(

ki,x−kx
)2

]

=

n
∑

x=1

NxE
(

s2
kx

)

,

(10b)

E
(

SSBempirical

)

=

(

n − 1

n

)

∑n

x=1
E
(

s2
kx

)

(random) +
∑n

x=1
Nx

[

E
(

kx−k∙
)]2

(deterministic)

(11a)E
(

SSEcomprehensive

)

=

n
∑

x=1

Nxϕxbx = SSEparametric

(11b)

E
(

SSBcomprehensive

)

=

(

n−1

n

)

∑n

x=1
E
(

s2
kx

)

+
∑n

x=1
Nx

(

bx−b
)2

=

(

n−1

n

)

∑n

x=1
ϕxbx+SSBparametric.

(12)�̂
2

kx
= s2

kx
=

∑Nx

i=1

�

ki,x−kx
�2

Nx − 1
.

(13)ŜSEcomprehensive =
∑n

x=1
Nx �̂

2

kx
.

(14)
ŜSBcomprehensive=SSBraw−E

(

SSBrandom

)

=
∑n

x=1
Nx

(

kx−k∙
)2

−

(

n−1

n

)

�̂
2

Within

,

(15a)b̂x =

(

1

Q

)

k1,x

(15b)b̂ =

(

1

Q

)

k∙

(16a)ŜSE =
∑n

x=1
Nx �̂

2

kx
.

(16b)
ŜSB=SSBscaled−E

(

SSBscaled,random

)

=
∑n

x=1
Nx

(

b̂x− b̂
)2

−

(

n−1

n

)

∑n

x=1
�̂
2

k,x
.
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8 of 17  |     WAPLES

3.1.4  |  Simulations

Simulation results for annual reproduction are shown in Figure 1, 
Figures S1 and S2, and Box S1. Across the scenarios evaluated, the 
estimators of SSB, SSE, and SSE/SST were asymptotically unbi-
ased for moderate to large sampling efforts and population sizes 
(hence group sizes). Biases that did occur for the smaller values of Q 
(where only 20–40% of the offspring were sampled) and group size 
(with N1 = 50, the oldest 2 age classes have only 3 and 6 individuals) 
generally applied to SSB but not SSE. Because the within-age sum 
of squares is generally much larger than the between-age sum of 
squares for annual reproduction, any bias to SSB causes proportion-
ally less bias to the ratio SSE/SST, which is the primary quantity of 
interest. Details include the following:

•	 Parametric SSE and SSB both increase linearly with population/
group size, but the random component to empirical SSB does not. 
As a consequence, any bias associated with adjusting for this ran-
dom component becomes relatively less important as group size 
increases (see Box S1).

•	 Under a null model with no true differences in expected fecun-
dity with age (all bx = b), ŜSB was close to 0 for all scenarios, but 

with a slight tendency for underestimation (presumably because 
the correction for the random component was too large). This 
bias becomes smaller as sampling effort and group size increase 
(Figure S1).

•	 If fecundity increases with age (a common pattern in many spe-
cies), ŜSE remains unbiased but ŜSB slightly overestimates para-
metric SSB, leading to a slight underestimate of SSE/SST. However, 
the resulting biases are small even for the smallest Q and N1 (the 
most extreme bias occurred with Q = 0.2 and N1 = 100, where es-
timated SSE/SST (0.78) was 4% higher than the parametric value, 
and this bias became negligible for N1 = 500; Figure 1). If fecundity 
decreases with age (as occurs with reproductive senescence), SSE 
is not affected but SSB is reduced compared to the increasing-fe-
cundity scenario, which increases SSE/SST (Figure S2).

•	 For generalized sampling, raw empirical SSE and SSB (repre-
sented by filled black circles in Figures 1 and 2) agreed closely 
with analytical expectations (solid black lines). Parametric expec-
tations under comprehensive sampling are shown in dotted red 
lines, which intersect the trajectories of the raw data only for 
Q = 1, which represents comprehensive sampling. Red triangles 
show how close rescaled estimates come to these parametric 
expectations.

F I G U R E  1 Results of simulations modeling annual reproduction in a hypothetical species for which fecundity increased linearly with age 
and variance in offspring number was random for individuals of the same age (all ϕx = 1; see Table 2). Left panels: Results for comprehensive 
sampling (Case 1) for a 40-fold range of population sizes, as indexed by the N1 values on the x axis. See Figure S1 for comparable results for a 
null model with parametric expectations given by Equations 9a and 9b. Black circles and black solid lines show observed and expected results, 
respectively. Center and right panels: Results for generalized sampling (Case 2) for four different sampling intensities, indicated on the x axis by 
Q = NOffspring/(2N1) = [0.2, 0.4, 1, 2]. Black circles and black solid lines show observed and expected results, respectively, using the raw data; red 
triangles and red dotted lines show observed and expected results after rescaling the data per Equations 7a and 7b. Center panels show results 
for N1 = 100, and right panels show results for N1 = 500. In all cases, observed results are means across 10,000 replicates.
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    |  9 of 17WAPLES

•	 Raw SSE and raw SSB both increase with sampling effort and 
hence mean offspring number, but they do so at different rates. 
As a consequence, the key ratio SSE/SST based on raw data can 
vary substantially based on sampling effort. For example, for 
the scenario in Figure 1 where fecundity increased with age, the 
proportion of the total sum of squares due to within-age effects 
ranged from >0.9 for Q = 0.2 to <0.6 for Q = 2 (black symbols and 
solid black lines in the bottom panels for N1 = both 100 and 500). 
All of these samples were generated by a single (albeit hypothet-
ical) population having one parametric set of vital rates, so this 
result illustrates the danger of using raw, unscaled data to draw 
inferences about variance partitioning.

•	 These results for the raw empirical data indicate that any biases 
associated with generalized sampling designs primarily arise 
during the variance-rescaling process that uses the non-linear 
Equations 7a and 7b. In this equation, 1/Q becomes a scaling fac-
tor that magnifies any small biases in the raw data.

3.1.5  |  A worked example—Black bears 
from Michigan

During 2002–2010, Michigan state biologists estimated ages (from 
teeth) for over 2500 black bears (Ursus americanus) killed by hunt-
ers. This example focuses on data collected from genetic parentage 

analysis of a subset of bears, which yielded 221 matches of offspring 
to both parents (Moore et al., 2014) and allowed estimation of age-
specific vital rates (Table 3). Black bears can live at least 20 years, 
but individuals older than 10 are uncommon, so those were grouped 
into a single plus age class. Males mature at age 2; females gener-
ally mature age 3 and can have litters of up to 4–6 cubs. Primary 
sex ratio is even, but males have lower survival so adult females are 
more numerous.

Cumulative survival for males though age 10 was l10 = 0.022, 
and all older males were lumped into a single ‘plus’ (age 11+) 
age class, with overall Σl11+ = 0.042. Assuming a fixed number 
of N1 = 260 yearling males each year, the rest of the age classes 
have Nx = lx*N1 individuals, with a total of NA = 448 age 2+ adults. 
Sample estimates of age-specific fecundity increased monotoni-
cally from k2 = 0.027 for age 2 to k10 = 0.377 for age 10, and (ex-
cept for age 2) the associated sample variances (s2

kx
) were all larger 

than the means, so raw ϕ values were > 1. Overall weighted mean 
sample offspring number is k∙ =

ΣkxNx

NA

= 0.0584. In a stable pop-
ulation with eqwual primar sex ratio (as applies to black bears) 
Σlx*kx = 2, but for the raw data Σlx*kx = 0.0998, so the index of 
sampling intensity was Q = 0.0998/2 = 0.05, indicating very 
sparse sampling.

To estimate parametric sums of squares, the first step is to res-
cale the raw data to values expected for a stable population. For 
each age, b̂x and �̂2

k,x
 are computed from Equations 15a and 15b, 

and the overall mean is estimated as b̂ =
(

1

Q

)

k∙ =
0.0584

0.05
= 1.17. The 

F I G U R E  2 As in Figure 1, except showing results for lifetime reproductive success. For the Generalized sampling scenarios, center 
panels show results for ϕ = 1 and right panels show results for ϕ = 10, in both cases with N1 = 500 and increasing fecundity with age. For 
comprehensive sampling, ϕ = 1 with increasing fecundity with age.
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10 of 17  |     WAPLES

rescaled age-specific ϕx values are considerably higher (up to 22.2 
for age 7 males), indicating that overdispersion is very substantial.

These rescaled variables are then used in Equations 16a and 16b 
to estimate parametric sums of squares (Table 3). Overall rescaled 
ŜSE is 4048.5. Total SSB from the rescaled data is 698.1, of which 
[

(n − 1)∕n
]

∗Σ�̂
2

kx
= 0.9∗274.7 = 247.2 can be attributed to random 

differences in estimated age-specific fecundity. Therefore, ŜSB is 
698.1–247.2 = 450.8. Of the total ŜSE, how much can be attributed 
to stochastic effects? Under a common null model, the distribution 
of offspring number within ages is Poisson, implying all ϕx = 1 and 
all �̂2

k,x
= b̂x, and these terms sum to 524. Of the within-ages com-

ponent, therefore, only a small fraction (~13%) can be explained 
by random, Wright-Fisher reproduction. The pie chart in Figure  4 
depicts partitioning of the overall ANOVA sums of squares. Most 
(85%) of the total SST is due to within-age effects, and most of that 
is attributable to greater-than-random variance in offspring number 
among males of the same age. Although fecundity increases sharply 
through at least age 10 in male black bears (Table 3), effects of this 
on variance in offspring number are dwarfed by within-age effects.

The last column in Table 3 shows the parametric expectation for Σk2
i
 

for each age, calculated as in Equation 4. Across all ages, Σk2i  is 5359, so 
the annual population variance is �2

k
=

Σk2
i

NA

−
(

b̂
)2

=
5359

448
− 1.172 = 10.6. 

Substituting values for the annual mean and variance in offspring num-
ber into Equation 3 produces Nb = 56.7

1 and Nb/NA = 56.7/448 = 0.126—
so in this example annual effective size of male black bears is 
one-eighth of the number of adult males. Under a null Wright-Fisher 
model, E

(

�2
k

)

= b̂ , leading to Nb/NA = 1, so all the reductions in the 
Nb/NA ratio can be attributed to greater-than-random variance within 
and between ages. From above, the greater-than-random component 
to SST is SSE>random + SSB>random = 3524 + 451 = 3975, of which 88.7% 

is from within-age effects and 11.3% from between-age effects. The 
total reduction in the Nb/NA ratio is 87.4%, of which the fraction 0.887, 
or 77.4%, is attributable to overdispersed within-age variance, and the 
remaining 9.9% reduction is due to systematic changes in fecundity 
with age.

For the annual male black bear data, Crow's I is 
�2
k

(

b̂
)2 =

10.6

1.172
= 7.74. 

Of this, 1/b̂ = 0.85 can be attributed to random reproductive suc-
cess, so the greater-than-random component of the Opportunity 
for Selection is ΔI = I −

1

b̂
= 7.74 − 0.85 = 6.89. These non-random 

contributions to the Opportunity for Selection can be partitioned 
in the same way as the reductions in Nb/NA: 88.7% of ΔI = 6.11 is at-
tributable to overdispersded within-age variance, and the remainder 
(0.78) to differences in fecundity with age.

Table  S1 replicates these analyses for female black bears, for 
which both changes in fecundity with age and age-specific ϕx are 
smaller than in males. The smaller magnitudes of nonrandom SSE 
and SSB cause a smaller reduction in effective size in females, so the 
Nb/NA ratio (0.271) is a bit over twice as large as for males. However, 
females mimic males in that the overwhelming majority of reductions 
in Nb/NA are due to overdispersed within-age variance rather than 
changes in fecundity with age. Similarly, in both sexes the non-ran-
dom component of the Opportunity for Selection is dominated by 
within-age effects. The patterns are displayed visually in Figure 4.

3.2  |  Lifetime reproductive success

The ANOVA sums of squares for lifetime SSB•, SSE•, and SST• in 
Equations 2a–2c are superficially similar in form to Equations 1a–
1c for annual reproduction, but with an important difference: for 

TA B L E  3 Variance partitioning analysis for seasonal reproduction by male black bears from Michigan.

Raw data Scaled data Sums of squares

Age vx lx kx s2
kx

lxkx ϕx Nx b̂x �̂
2

kx
ϕx SSE SSErandom SSB �k2

i

1 0.639 1.000 0.000 NA 0.0000 – 260 – – – – – – –

2 0.559 0.639 0.027 0.026 0.0173 0.963 166 0.541 0.1 0.3 23.1 89.8 65.6 72

3 0.670 0.357 0.030 0.032 0.0107 1.067 93 0.601 1.4 2.3 130.6 55.9 30.0 164

4 0.670 0.239 0.030 0.033 0.0072 1.100 62 0.601 1.8 3.0 112.0 37.3 20.0 134

5 0.670 0.160 0.062 0.069 0.0099 1.113 42 1.243 4.1 3.3 170.3 52.2 0.2 235

6 0.670 0.107 0.121 0.166 0.0130 1.372 28 2.425 20.5 8.5 574.1 67.9 44.1 739

7 0.670 0.072 0.156 0.321 0.0112 2.058 19 3.127 69.4 22.2 1318.9 59.4 72.8 1505

8 0.670 0.048 0.196 0.329 0.0095 1.679 13 3.929 57.4 14.6 745.7 51.1 98.9 946

9 0.670 0.032 0.238 0.354 0.0077 1.487 8 4.770 51.4 10.8 411.0 38.2 103.7 593

10 0.670 0.022 0.377 0.454 0.0082 1.204 6 7.556 38.5 5.1 230.9 45.3 244.7 574

11+ 0.000 0.042 0.122 0.191 0.0052 1.566 11 2.445 30.2 12.3 331.8 26.9 17.9 398

Totals 0.0998 Ages 2 +  448 274.7 4048.5 524.0 698.1 5359

Note: Assuming constant production of N1 = 260 yearling males, these vital rates would produce an adult male population size of 448 age 2+ 
individuals. Columns under “Raw data” show estimates from field samples reported by Waples et al. (2018). Columns under “Scaled data” show 
variables that have been rescaled based on the estimated index of sampling intensity Q = 0.05. The “Sums of squares” columns show age-specific 
within-age (SSE) and between-age (SSB) components based on scaled vital rates, and the Σk2

i
 column (which shows age-specific squared numbers 

of offspring per individual) is used to compute overall annual variance in offspring number and annual effective size, Nb. See Table 1 for notation, 
Table S1 for comparable data for females, and text for explanation of the calculations.
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    |  11 of 17WAPLES

analysis of LRS, groups are defined by age-at-death, which means 
that all groups with q > 1 record cumulative LRS over two or more 
years. As shown in Supporting Information, a consequence of this is 
that the group-specific terms for SSE• take the form

This means that within-group variances are simple additive func-
tions of age-specific variances only if an individual's reproduction at 
one age does not affect its survival or reproduction at any subsequent 
age. That in fact is a common assumption in modeling age-structured 
populations (e.g., Felsenstein, 1971; Waples et al., 2011), and to make 
the analytical expectations tractable that assumption is adopted here.

In many species, however, these covariance terms are not expected 
to be 0. Persistent individual differences occur when certain individuals 
are consistently above or below average for their age and sex at produc-
ing offspring (Lee et al., 2011), and these persistent differences lead to 
positive covariances in offspring production over time. Conversely, neg-
ative covariances occur when reproduction by an individual in one time 
period negatively affects its reproduction in subsequent time periods. 
Transient negative effects of this type are found in many species that 
exhibit skip or intermittent breeding (Shaw & Levin, 2013; Waples & 
Antao, 2014), and permanent negative effects can occur if reproduction 
adversely affects survival (e.g., McCleery et al., 1996). These temporal 
covariances do not affect calculation of SSE ∙ from empirical data using 
Equation 2a, but to the extent that they do occur they will be reflected 
in the magnitude of the within-group sum of squares and will affect 
agreement with expectations based on the simpler model.

SSB ∙ deals with group means rather than individuals and is not 
sensitive to the temporal correlations of individual reproductive suc-
cess that affect SSE ∙. However, the group means k∙q. are cumulative 
sums of LRS over time and hence are positively correlated. For ex-
ample, k∙2 = k1 + k2 and k∙3 = k1 + k2 + k3 share terms for mean LRS 
for individuals that die at ages 2 and 3. Furthermore, the weighted 
sums of squares and the weighted variance are both affected by the 
correlation between the patterns of change in group sample size and 
fecundity change with age (see Box S2 for details).

3.2.1  |  Parametric variance components

As with annual reproduction, parametric values are considered to be 
expected values in a stable population in which all lifetime offspring 
have been assigned to the N1 potential parents in a cohort. Since the 
population is stable, overall mean offspring number for the cohort 
is k∙∙ = 2.

Under those conditions, the parametric sums of squares for LRS 
are (see Appendix S1 for details):

Two factors contribute to the squared-difference terms in 
Equation  17b: (1) changes in fecundity with age, which modulate 
the magnitude of 

∑q

x=1
bx, and (2) differences among individuals in 

age-at-death (longevity, indexed by q). These two factors can be 
separated by holding fecundity constant with age, which eliminates 
factor 1, so the residual SSB ∙ can all be attributed to variation in 
longevity. If all bx = b, then expected LRS for an individual that dies 
at age q is qb, so the above equation simplifies to

while the remainder represents the between-age component of para-
metric SSB ∙.

3.2.2  |  Estimation

Case 1: Comprehensive sampling
Following the framework used for annual reproduction, a logical es-
timator of the overall with-group sum of squares for lifetime repro-
duction is

where �̂2
k∙,q

 is the unbiased estimate of the variance within each group.
For comprehensive empirical data,

and an unbiased estimator for SSB ∙ is

The estimator ŜSB∙ accounts for the same two factors that con-
tribute to parametric SSB ∙: changes in fecundity with age, and differ-
ences in longevity. ŜSB∙longevity can be calculated from Equation 17c 
using the estimator of overall mean annual offspring number (b̂) from 
comprehensive sampling.

Case 2: Generalized sampling designs
As before, we consider sampling at level Q compared to comprehen-
sive sampling and first develop an expectation for the raw sums of 
squares as a function of Q (see Appendix S1 for those results). Next 
we want to rescale the raw (empirical) variances to expected values 
under comprehensive sampling. With analogy to Equations 7a, 7b, 
15a and 15b,

SSE∙q = Dq

[

var
(

ki,1
)

+ var
(

ki,2
)

+ … var
(

ki,q
)

+ 2
∑q

j<k
cov

(

ki,j , ki,k
)

]

.

(17a)SSE∙parametric =
∑n

q=1
Dq

∑q

x=1
ϕxbx ,

(17b)SSB∙parametric =
∑n

q=1
Dq ∗

((

∑q

x=1
bx

)

−2
)2

.

(17c)SSB∙parametric,longevity =
∑n

q=1
Dq

(

qb−2
)2
,

(18a)ŜSE∙ =
∑n

q=1
Dq�̂

2

k∙,q
,

E
(

SSB∙comprehensive

)

=
n − 1

n

∑n

q=1
�̂
2

k∙,q
+
∑n

q=1
Dq ∗

((

∑q

x=1
bx

)

−2
)2

,

(18b)ŜSB∙comprehensive = SSB∙raw −
n − 1

n

∑n

q=1
�̂
2

k∙,q
.

(19a)Σ̂bx =

(

1

Q

)

k∙q

(19b)b̂∙ =

(

1

Q

)

k∙∙
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Leading to

As with annual reproduction, to estimate parametric SSB• under 
generalized sampling, the first step is to rescale the age-specific vital 
rates, producing:

and

3.2.3  |  Simulations

In many respects, simulation results for lifetime reproduction paral-
leled those for annual reproduction:

•	 ŜSE∙ is essentially unbiased even for small group sizes and low 
sampling effort;

•	 ŜSB∙ shows some minor bias for low N1 that largely disappears 
with larger group sizes;

•	 Except under comprehensive sampling, raw LRS data require 
rescaling to produce unbiased estimates of parametric sums of 
squares.

A few important differences are also worth noting. First, under 
the null model with constant fecundity, SSB ∙ does not have an ex-
pectation of 0, as it does for annual reproduction. Individuals that die 
at different ages differ in number of opportunities to participate in 
reproduction and hence have different expectations of LRS. Results 
for SSB ∙ for the null model thus can all be attributed to variation in 
longevity (Figures S2 and S4). All else being equal, therefore, SSB ∙ 
makes a relatively larger contribution to overall SST ∙ than annual 
SSB does to SST.

A second and related point is that the pattern of change (if any) in 
fecundity with age has a strong effect on SSB ∙. This does not lead to 
bias, because these effects are fully accounted for in Equations 18b 
and 20b. However, as shown in Figure S4 and Box S2, if fecundity 
declines with age (as it can with reproductive senescence), total SSB ∙ 
can be less than would be expected if fecundity were constant (i.e., 
total SSB ∙ < SSB∙longevity). The interpretation in this case would be 
that the pattern of between-age differences in fecundity reduces 
overall SSB ∙ compared to what it would be if SSB ∙ only reflected 
differences in longevity.

Finally, positive or negative correlations in reproduction over 
time can have a strong influence on SSE ∙, whereas they have no 
effect on annual SSE because the latter considers only one time 
period. The example in Figure  3 simulated a population using a 

generalized Wright-Fisher model (Waples, 2022), where individuals 
were allowed to have unequal probabilities of producing offspring, 
as indicated by a vector of parental weights, W (see Appendix S1 
for details). Randomly scrambling the weights each year satisfies 
the assumption of independence across time, producing results 
shown in the first half of the replicates in Figure 3. Allowing indi-
viduals to retain their weights throughout their lifetimes (second 
half of the replicates) creates persistent individual differences and 
positive correlations in individual reproductive success over time, 
which substantially increase SSE ∙ (and hence SST ∙) but have no ef-
fect on SSB ∙.

3.2.4  | Worked example – great tits

The great tit (Parus major) is a woodland passerine with a wide dis-
tribution in Europe, including the UK. Four Dutch populations have 
been intensively monitored since the 1950s (Visser et  al.,  2021). 
Study sites are wooded areas fitted with an abundance of nest 
boxes; each year, every female that lays a clutch is captured and her 
ID recorded. Chicks are banded before fledging to allow tracking in 
the future. Data used here pertain to the cohort of birds at the Hoge-
Veluwe site that matured at age 1 in 1980.

Although great tits occasionally live to 8–9 years, life expectancy 
is 2 years or less. In this cohort, females reproduced only at ages 1–4, 
so for analysis of LRS we consider n = 4 groups with ages-at-death 
q = 1–4. Raw data are first tabulated into a matrix with one row per 
female:

(19c)�̂
2

∙q
= Σ̂bx

[

1 +
1

Q

(

s2
k∙,q

k∙q
− 1

)]

,

(20a)ŜSE∙ =
∑n

q=1
Dq�̂

2

∙q
.

E
(

SSB∙scaled
)

=
n − 1

n

∑n

q=1
Dq ∗ �̂

2

k∙,q
+
∑n

q=1
Dq

((

∑q

x=1
b̂
)

−2
)2

,

(20b)ŜSB∙ = SSB∙scaled −
n − 1

n

∑n

q=1
Dq ∗ �̂

2

k∙,q
.

F I G U R E  3 Results of simulations of LRS using the vital rates 
shown in Table 2, with fecundity that increased with age and 
moderately overdispersed variance in reproductive success (all 
ϕx = 3). The y axis shows the sum of squares for the three variance 
components, with the groups defined by age-at-death. On the x 
axis, in replicates 1–500 parental weights were shuffled each year, 
so there were no persistent individual differences in reproductive 
success. In replicates 501–1000, the same parental weights were 
retained across individual lifetimes, which introduced positive 
correlations in realized reproductive success across time; this had 
no effect on SSB• but sharply increased SSE• and hence SST•.
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ID Age1 Age2 Age3 Age4 LRS q

1 0 0 NA NA 0 2

2 1 1 0 NA 2 3

3 0 NA NA NA 0 1

5 1 NA NA NA 1 1

6 0 NA 2 3 5 4

Columns 2–5 show the number of age-1 recruits produced by 
each female at each age, with LRS being the total. A “0” indicates 
the bird was recorded attempting a nest that year but produced no 
recruits that were recorded in subsequent years; “NA” indicates the 
bird was not observed that year. Age-at-death (q) was taken to be the 
oldest age with reproductive success data. In this matrix, female 1 
died after age 2 without producing any recruits, female 2 produced 1 
recruit at ages 1 and 2 before producing a clutch (but no surviving re-
cruits) at age 3, and female 6 produced a clutch but no recruits at age 
1, was not observed at age 2, and then produced 2 and 3 recruits, 
respectively, at ages 3 and 4, so its LRS is 5.

Females can be grouped by age-at-death to produce results 
shown in Table 4. The cohort includes ΣDq = 81 females, with D1 = 48 
dying after reproducing at age 1, and just 5 that reproduced at age 4. 
Reconstructed adult census size, based only on data for this cohort, 
is ΣNx = 138 females. Columns k∙q and s2

k∙,q
 are mean and unbiased 

sample variance in LRS for each age-at-death. The sample variance 
is slightly overdispersed for q = 1–3 (raw𝜙q =

s2
k∙,q

k∙q
> 1), but s2

k∙,4
≪ k∙4 , 

indicating substantial underdispersion in the oldest age-at-death 
group. This group includes only 5 individuals that, by luck or pluck, 
all left 3–5 total offspring. The 81 members of the cohort produced 
a total of 61 lifetime offspring, so overall mean sample LRS for the 
cohort is k∙∙ = 61/81 = 0.753, much less than mean LRS expected for 
a stable population (2), so Q = 0.753/2 = 0.376. Although birds that 
build nests within the study area are exhaustively sampled, repro-
duction also occurs in surrounding woods, so subsequent sampling of 
dispersing recruits born within the study area is not comprehensive.

Rescaling the raw data produces estimates of parametric vital rates, 
based on the relationships that ̂bq =

k∙q

Q
 and ̂�2

k∙,q
= b̂q

[

1 +
1

Q

(

s2
k∙,q

k∙q
− 1

)]

 . 
Finally, estimates of parametric sums of squares are made as 

follows: ŜSE∙ =
∑n

q=1
ŜSE∙q =

∑n

q=1
Dq�̂

2

k∙,q
= 188.9 . If all ϕx were 1, 

E(SSE•random) = 162, so most of the empirical SSE• can be explained by 
random reproduction. For the between-group sum of squares, SSB• 
is 366.4, from which we subtract 

�

n− 1

n

�

∗
∑n

q=1
�2
k∙,q

= 0.75∗9.7 = 7.2 
to account for stochasticity, leaving ŜSB∙ = 359.1. To evaluate how 
much of this can be explained by random variation in longevity, re-
place all bx by b̂ = 2N1ΣqDq = 1.17. The result (ŜSB∙longevity = 103.2 ) 
is about 30% of total ŜSB∙, with the remainder attributed to differ-
ences in fecundity with age. The estimate of the total parametric 
sum of squares is ŜST∙ = ŜSE∙ + ŜSB∙ = 548.0, of which a bit over a 
third (34.5%) is due to within-group effects. Most of the latter is 
attributable to random variation in reproductive success among 
same-age individuals (hence, overdispersion within ages is modest). 
Effects of persistent individual differences in reproductive success 
would appear in SSE•. To evaluate this, I computed an index (ρα,α+) 
proposed by Waples (2023), which is the correlation across individu-
als between the number of offspring produced at the age at maturity 
(α) and total offspring produced during the rest of their lifetimes. 
Persistent individual differences in reproductive success are ex-
pected to produce positive values of ρα,α+, whereas negative values 
can be caused by skip breeding or tradeoffs between reproduction 
and survival. The correlation was not significant (ρα,α+ = −0.137, 
p = .22, n = 81 for a two-tailed test), suggesting that effects, if any, 
were relatively minor.

To evaluate uncertainty in the variance partitioning, annual data 
for the 81 females in the cohort were bootstrapped 10,000 times 
and the parametric sums of squares were re-estimated from each 
replicate (Figure 5). The 95% bootstrapped CI for ŜSE∙ extends well 
below the null expectation, so there is no overall evidence for with-
in-age overdispersion compared to random Poisson variance. The 
bootstrap CI for ŜSB∙ is wide but the lower bound (124) is larger 
than the null expectation that all between-age-at-death differences 
in LRS can be attributed entirely to variation in longevity—which is 
consistent with reports of some modest changes in fecundity with 
age in this species (Bouwhuis et  al.,  2012). The median bootstrap 
ratio ŜSB∙∕ ŜST∙ = 0.68 agreed well with the conclusion from the 
original data that about two thirds of the total lifetime variance was 

TA B L E  4 ANOVA analysis of lifetime reproductive success in the cohort of female great tits that matured at age 1 in 1980 in the Hoge-
Veluwe site in the Netherlands.

x,q Dq Nx

Raw LRS data Scaled data Sums of squares

k∙q s2
k∙,q

ϕq �b̂x �̂
2

∙q
ϕq SSE• SSE•random SSB• SSB•long

1 48 81 0.46 0.51 1.11 1.22 1.58 1.30 75.7 56.3 29.5 32.8

2 14 33 0.50 0.58 1.15 1.33 1.87 1.41 26.2 32.9 6.3 1.7

3 14 19 0.93 1.46 1.57 2.47 6.21 2.52 87.0 49.3 3.1 32.4

4 5 5 3.80 1.20 0.32 10.09 0.00 0.00 0.0 23.5 327.5 36.3

81 138 9.7 188.9 162.0 366.4 103.2

Note: The “Dq” column shows the distribution of ages-at-death for the 81 members of the cohort. Columns under “Raw LRS data” show estimates of 
LRS metrics based on field samples of age-1 recruits. Columns under “Scaled data” show variables that have been rescaled based on the estimated 
index of sampling intensity Q = 0.376. For q = 4, rescaling the raw s2

k∙,q
 produced a negative result, so �̂2

∙4
 was recorded as 0. The “Sums of squares” 

columns show within-age-at-death (SSE•) and between-age-at-death (SSB•) components. See Table 1 for notation, and text for explanation of the 
calculations.

 20457758, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10647, W

iley O
nline L

ibrary on [05/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 17  |     WAPLES

due to SSB ∙, but the empirical 95% CI was wide (0.34–0.87), so the 
exact partitioning is uncertain. Much of this uncertainty can be at-
tributed to the small number (5) of birds that lived to age 4, all of 
which had high LRS; how many of those birds were selected in each 
bootstrap replicate therefore had a large effect on results.

With overlapping generations, Ne is proportional to generation 
length (Equation  5), so parsing factors contributing to the Ne/N 
ratio is more complicated than it is for annual Nb/N. If all N1 mem-
bers of the cohort had random variation in LRS, then E(�2

k ∙
) = mean 

(LRS) = 2, in which case Equation 5 would simplify to Ne = N1T, which 
is the number of newborns entering the population in a generation 
(Hill, 1972). Accordingly, we focus on factors that elevate �2

k ∙
 com-

pared to the null expectation. The constant-N scaled estimate of 
the variance of LRS is �̂2

k ∙
= 6.13, about 3 times as large as the null 

expectation. The 3 relevant factors are overdispersed variance in re-
productive success among same-age individuals, systematic changes 
in fecundity with age, and variation in longevity. Of these, changes in 
fecundity with age are by far the most important (~3 times the lon-
gevity effect), and within-age effects are only of minor importance.

The Opportunity for Selection metric for LRS, adjusted 
to account for random contributions, is designed to be calcu-
lated from raw data (Waples & Reed,  2023). The sample mean 
LRS is 0.753 and the sample variance is 1.34, so the raw OFS is 
I ∙ =

s2
k ∙

k∙∙
2 =

1.34

0.567
= 2.36 . From this we subtract expected contri-

butions from sampling offspring (which is the inverse of mean 
LRS) and a term to account for random variation in longevity, 
which is independent of sampling effort. This latter term (from 
Equations 10a and 10b in Waples & Reed, 2023) is:

where q =
∑n

q=1
qDq ∕

∑n

q=1
Dq is the mean age at death. For the great 

tit data, q = 1.70 and E
(

I∙longevity
)

= 0.32. The net OFS metric that rep-
resents greater-than-random variance in LRS is

E
�

I∙longevity
�

=

∑n

q=1
Dq ∗ (q−q)2

q2
∑n

q=1
Dq

,

ΔI∙ = 2.36 −
1

0.753
− 0.32 = 0.713.

F I G U R E  4 Graphical depiction of the partitioning of 
components of variation in offspring number for annual 
reproduction in black bears (based on data in Table 3 and Table S1) 
and lifetime reproduction in great tits (based on data in Table 4). In 
the ANOVA panels, the area of each pie is overall SST for rescaled 
data, and colored segments depict the relative contributions 
of random and greater-than-random within-age (SSE) and 
between-age (SSB) components; for LRS in great tits, the relative 
contribution from random variation in longevity is also shown. The 
area of each annual effective size pie for black bears represents 
unity; the black sector represents the Nb/N ratio, and the blue 
and red sectors show reductions in Nb/N that are attributable to 
within-age and between-age effects, respectively. The lifetime 
effective size pie for great tits shows the relative contributions of 
within-age, between-age, and longevity effects on variance in LRS. 
The Opportunity for Selection panels show the magnitude of OFS 
that exceeds that expected under a null model of random variation 
in reproductive success. The area of each pie is proportional to ΔI 
(or ΔI∙ for LRS in the great tit), and the relative sizes of the within-
age and between-age effects are shown by the colored segments. 
Numbers next to colors in the legend correspond to numbered 
segments in the pie charts.

F I G U R E  5 Results from bootstrapping raw data for lifetime 
reproduction in great tits. Black bars are point estimates discussed 
in the text; rectangles are empirical 95% confidence intervals 
across 10,000 bootstrap replicates. Left axis shows unbiased 
estimates of sums of squares; right axis shows SSB• as a fraction 
of the total sum of squares SST•. Dotted lines show the expected 
random contribution to SSE• from Poisson variance in reproductive 
success within ages and the expected contribution to SSB• from 
random variation in longevity.
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    |  15 of 17WAPLES

As with reductions to effective size, almost all of this ΔI∙ can be 
attributed to between-age effects.

4  |  DISCUSSION

Important points that emerge from results presented above can be 
summarized as follows:

•	 The ANOVA sums of squares formulas in Equations 1a–1c and 
Equations  2a–2c do not require any assumptions about demo-
graphic or population dynamic processes and can be used with 
any empirical datasets that include numbers of offspring pro-
duced by each potential parent in each time period.

•	 Robust estimates of parametric within- and between-group sums 
of squares also provide robust estimates of the proportions of the 
total variance in offspring number arising from these two sources 
of variation.

•	 For a given age structure (relative age-group sizes determined 
by the cumulative survivorship vector lx), variance partitioning is 
independent of N, which means that randomly subsampling po-
tential parents produces unbiased estimates of the variance par-
titioning (Figure S5). However, because the mean and variance of 
offspring number are positively correlated, variance partitioning 
is NOT independent of the fraction of offspring sampled. Under 
generalized sampling, empirical means and variances can be res-
caled using an index of sampling intensity (Q) to allow meaningful 
comparisons across studies. Q can be estimated directly from the 
raw data.

•	 Estimators of parametric sums of squares developed here are as-
ymptotically unbiased, with modest biases to ŜSB and ŜSB∙ when 
some group sizes are <10 and/or sampling is very sparse.

Without in any way suggesting that the topic considered here 
is as consequential as the one Lewontin tackled in his landmark 
1972 paper, some important parallels can be identified between 
his apportionment of human genetic diversity and partitioning of 
variance in offspring number. A major point of Lewontin's paper 
was that the genetic differences most people were focusing on (be-
tween races, or geographic populations within races) are dwarfed 
by the ‘other’ ~85% of molecular genetic variation that is found 
among individuals within those groups. The situation is similar for 
partitioning variance in offspring number, where the within-age 
sum of squares for annual reproduction (SSE) generally dominates 
the overall variance, even when fecundity changes sharply with age 
and variance within ages is Poisson (Figure  S1). Published litera-
ture, however, consistently focuses primarily on the between-age 
component (indexed by bx values from a life table) and largely ig-
nores the within-age component. That is akin to ignoring all but the 
small red sectors in the black bear pie charts in Figure 4—that is, the 
‘other’ 85+% of the total variation. Notably, SSE is also ≫SSB (and 
to a proportionally greater degree) for female black bears, which 
is a bit surprising, given that in most species males are expected 

to have higher reproductive variance. SSE is lower in female black 
bears than in males, but SSB is as well (and to a proportionally 
greater degree), leading to the net result that the within-age com-
ponent is relatively more important in females.

The typical outcome of variance partitioning is somewhat differ-
ent for lifetime reproduction. Mortality inevitably creates disparities 
in individual longevity, which increase SSB• and tend to make the 
variance partitioning more even. Still, the within-age component 
(SSE•) generally is fairly substantial and can dominate if within-age 
variance is overdispersed (ϕ > 1; Figure 2).

The two worked examples illustrate some of the vagaries of deal-
ing with empirical data for natural populations. Although the black 
bear data were collected during an intensive study that lasted most 
of a decade, this represents less than half of the maximum lifespan 
for the species, so analysis of LRS was not feasible. The 221 par-
ent-offspring matches also represented a small fraction of the es-
timated numbers of potential parents that might have produced 
matches, so effective sampling effort was very sparse (estimated at 
Q = 5% for males). Nevertheless, this sparse sampling was sufficient to 
demonstrate that, in both sexes, within-age effects account for most 
of the overall variance in annual offspring number. Because the ex-
perimental design required combining estimates for reproduction in 
different years, the estimated SSE component includes a year effect 
of unknown magnitude. With more extensive data, one could esti-
mate and account for this year effect (as done for example by Engen 
et al., 2005, 2010, who treated it as a random environmental effect).

Somewhat ironically, although breeding pairs of great tits are ex-
haustively sampled each year within the study area (as are eggs and 
fledglings they produce), the variance partitioning had a relatively 
high degree of uncertainty. Two factors are primarily responsible for 
this result. First, surviving birds can return to breed in the surround-
ing woods, so sampling of offspring at the recruit (age 1) stage is not 
exhaustive (estimated here at Q = 37% for the cohort in question). 
Second, the population is relatively small, in the sampled cohort only 
5 females lived to reproduce at age 4, and these birds all had high 
and nearly identical LRS. These five individuals were highly influ-
ential to the variance partitioning, as reflected in the wide range of 
bootstrapped results.

LRS data can be more complicated to interpret because of potential 
correlations between reproduction and survival that can affect SSE•. 
In the great tit example, ŜSE∙ was only slightly higher than (and statis-
tically consistent with) a null model in which within-age reproductive 
variance was Poisson and expected values of these correlations were 
0 (Figure 5). Furthermore, the index of correlation between initial and 
subsequent reproductive success (ρα,α+) was not significantly different 
from zero. It seems likely, therefore, that factors such as persistent in-
dividual differences and effects of reproduction on survival were not 
substantial, at least for this particular cohort.

The pie charts in Figure 4 are a convenient way to visually depict 
the partitioning of variance in reproductive success. It is immediately 
apparent, for example, that whereas within-age effects dominate the 
overall variance in black bears, they are of relatively minor impor-
tance for great tits. Two of the most common practical applications 
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for these results are calculations of effective population size and 
the Opportunity for Selection. In applied conservation and manage-
ment, insights into factors that reduce the effective size: census size 
ratio can help direct efforts to raise that key ratio. For both male 
and female black bears, the most effective strategies would involve 
reducing disparities in reproductive success among individuals of the 
same age. For great tits, in contrast, individual variation in longevity 
and modest differences in fecundity with age are the primary factors 
that increase variance in LRS and reduce Ne.

Ideally, Ne should be computed across a full life cycle; if not, the 
value applies to only part of a generation. One option is to compute 
variance in offspring number in terms of production of zygotes by 
zygotes (Hill, 1972), as doing so avoids the well-known problem of 
creating an index that reflects both fertility of parents and survival 
of their offspring (Thomson & Hadfield, 2017). However, this pre-
dictably leads to zero-inflation of �2

k ∙
 in proportion to the magnitude 

of mortality before first breeding (Waples & Reed,  2023). In the 
great tit example, �2

k ∙
 was estimated as production of age-1 recruits 

by adults, which covered a full life cycle because maturity occurs at 
age 1. It is true that the Opportunity for Selection based on �2

k ∙
 com-

puted this way will include components for both parental fertility 
(I•f) and offspring mortality (I•m), but these components would need 
to be studied separately in any detailed study of selection.

It should be remembered that the Opportunity for Selection is 
just that—an opportunity—and is not a demonstration that selec-
tion has actually occurred (see recent review by Reed et al., 2023). 
Nevertheless, the relative magnitude of OFS can help researchers 
direct scarce resources toward experimental designs that are most 
likely to produce interesting results. The indices used here (ΔI for 
annual reproduction in black bears and ΔI∙ for LRS in great tits) are 
independent of mean fitness and reflect the component of OFS that 
exceeds the random expectation under common null models. From 
Figure 4, it is apparent that OFS is relatively large for male black 
bears, and that within-age effects would be the most productive 
factors to explore. Inspection of Table 3 indicates that ages 6 and 
older (with high variance-to-mean ratios) are particularly good can-
didates for studies of natural selection. For this particular cohort 
of great tits, ΔI∙ is relatively small (Figure 4). It would be premature 
to conclude that selection is unimportant in this species, however, 
because this estimate applies to a single cohort of females, none 
of which survived beyond age 4. Furthermore, longitudinal studies 
of great tits demonstrate ample genetic variation for traits such as 
mean laying date, which can vary across years with different envi-
ronmental conditions (Visser et al., 2021).

Because the equal-variances ANOVA assumption will often be 
violated with empirical reproductive-success data, Fisher's F statistic 
is not recommended in significance testing of variance partitioning. 
Instead, bootstrapping can be used with the raw data, as in the LRS 
example for great tits. The worked example for annual reproduction 
in black bears used age-specific vital rates rather than raw data, be-
cause vital rates are widely available in standard life tables, but a 
similar bootstrap approach could be used to generate confidence in-
tervals when raw data are available. Variance partitioning for annual 

reproduction does require an age-specific vital rate (ϕx = �2
k,x

∕bx) 
that is not widely reported. If estimates of ϕx are not available, a 
range of plausible values could be explored.

Extrapolating from annual vital rates to LRS requires some as-
sumptions about temporal correlations in individual reproductive 
success over time, which might be feasible for some species. For ex-
ample, consequences of skip breeding might be modeled using the 
parameter θi (Shaw & Levin, 2013), which gives the probability that 
an individual will reproduce in the current year, given that it last re-
produced i years previously. Persistent individual differences can be 
modeled using TheWeight algorithm (Waples, 2022), which could be 
tuned to simulate a desired level of positive correlation in individual 
reproductive success over time.
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